Cross-validation with active pattern selection for neural-network classifiers

被引:18
作者
Leisch, F [1 ]
Jain, LC
Hornik, K
机构
[1] Vienna Tech Univ, Inst Stat & Wahrscheinlichkeitstheorie, A-1040 Vienna, Austria
[2] Univ S Australia, Knowledge Based Engn Syst Grp, Adelaide, SA 5095, Australia
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 1998年 / 9卷 / 01期
关键词
active pattern selection; classification; cross-validation; risk;
D O I
10.1109/72.655027
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a new approach for leave-one-out cross-validation of neural-network classifiers called "cross-validation with active pattern selection" (CV/APS), In CV/APS, the contribution of the training patterns to network learning is estimated and this information is used for active selection of CV patterns, On the tested examples, the computational cost of CV can be drastically reduced with only small or no errors.
引用
收藏
页码:35 / 41
页数:7
相关论文
共 10 条
[1]  
Akaike H, 1973, 2 INT S INF THEOR
[2]  
[Anonymous], 1994, THESIS U CALIFORNIA
[3]   PEDAGOGICAL PATTERN SELECTION-STRATEGIES [J].
CACHIN, C .
NEURAL NETWORKS, 1994, 7 (01) :175-181
[4]  
HAMPSHIRE JB, 1994, EQUIVALENCE PROOFS M
[5]   SELECTING CONCISE TRAINING SETS FROM CLEAN DATA [J].
PLUTOWSKI, M ;
WHITE, H .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1993, 4 (02) :305-318
[6]  
REEVES CR, 1993, ESTIMATION MISCLASSI
[7]  
Robel A., 1994, DYNAMIC PATTERN SELE
[8]  
Ruck D W, 1990, IEEE Trans Neural Netw, V1, P296, DOI 10.1109/72.80266
[9]   CROSS-VALIDATORY CHOICE AND ASSESSMENT OF STATISTICAL PREDICTIONS [J].
STONE, M .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1974, 36 (02) :111-147
[10]   ASYMPTOTIC EQUIVALENCE OF CHOICE OF MODEL BY CROSS-VALIDATION AND AKAIKES CRITERION [J].
STONE, M .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1977, 39 (01) :44-47