Transcriptional profiling of wine yeast in fermenting grape juice: regulatory effect of diammonium phosphate

被引:58
作者
Marks, VD [1 ]
van der Merwe, GK [1 ]
van Vuuren, HJJ [1 ]
机构
[1] Univ British Columbia, Fac Agr Sci, Wine Res Ctr, Vancouver, BC V6T 1Z4, Canada
关键词
wine yeast; nitrogen catabolite repression; genome-wide expression analysis; ethyl carbamate; fusel alcohol; hydrogen sulfide; one-carbon metabolism;
D O I
10.1016/S1567-1356(02)00201-5
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The nitrogen composition of grape musts affects fermentation kinetics and production of aroma and spoilage compounds in wine. It is common practice in wineries to supplement grape musts with diammonium phosphate (DAP) to prevent nitrogen-related fermentation problems. Laboratory strains of Saccharomyces cerevisiae preferentially use rich nitrogen sources, such as ammonia, over poor nitrogen sources. We used global gene expression analysis to monitor the effect of DAP addition on gene expression patterns in wine yeast in fermenting Riesling grape must. The expression of 350 genes in the commercial wine yeast strain VIN13 was affected; 185 genes were down-regulated and 165 genes were up-regulated in response to DAP. Genes that were down-regulated encode small molecule transporters and nitrogen catabolic enzymes, including those linked to the production of urea, a precursor of ethyl carbamate in wine. Genes involved in amino acid metabolism, assimilation of sulfate, de novo purine biosynthesis, tetrahydrofolate one-carbon metabolism, and protein synthesis were up-regulated. The expression level of 86 orphan genes was also affected by DAP. (C) 2002 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:269 / 287
页数:19
相关论文
共 60 条
[1]   Functional genomic analysis of a commercial wine strain of Saccharomyces cerevisiae under differing nitrogen conditions [J].
Backhus, Leilah E. ;
DeRisi, Joseph ;
Brown, Patrick O. ;
Bisson, Linda F. .
FEMS YEAST RESEARCH, 2001, 1 (02) :111-125
[2]   The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors [J].
Beck, T ;
Hall, MN .
NATURE, 1999, 402 (6762) :689-692
[3]   AUTOMATIC DETECTION OF ASSIMILABLE NITROGEN DEFICIENCIES DURING ALCOHOLIC FERMENTATION IN ENOLOGICAL CONDITIONS [J].
BELY, M ;
SABLAYROLLES, JM ;
BARRE, P .
JOURNAL OF FERMENTATION AND BIOENGINEERING, 1990, 70 (04) :246-252
[4]   Tripartite regulation of Gln3p by TOR, Ure2p, and phosphatases [J].
Bertram, PG ;
Choi, JH ;
Carvalho, J ;
Ai, WD ;
Zeng, CB ;
Chan, TF ;
Zheng, XFS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (46) :35727-35733
[5]  
Bisson LF, 1999, AM J ENOL VITICULT, V50, P107
[6]   Remodeling of yeast genome expression in response to environmental changes [J].
Causton, HC ;
Ren, B ;
Koh, SS ;
Harbison, CT ;
Kanin, E ;
Jennings, EG ;
Lee, TI ;
True, HL ;
Lander, ES ;
Young, RA .
MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (02) :323-337
[7]  
Cooper T.G., 1982, MOL BIOL YEAST SACCH, P39, DOI DOI 10.1101/087969180.11B.39
[8]   YPD™, PombePD™ and WormPD™:: model organism volumes of the BioKnowledge™ Library, an integrated resource for protein information [J].
Costanzo, MC ;
Crawford, ME ;
Hirschman, JE ;
Kranz, JE ;
Olsen, P ;
Robertson, LS ;
Skrzypek, MS ;
Braun, BR ;
Hopkins, KL ;
Kondu, P ;
Lengieza, C ;
Lew-Smith, JE ;
Tillberg, M ;
Garrels, JI .
NUCLEIC ACIDS RESEARCH, 2001, 29 (01) :75-79
[9]   The Yeast Proteome Database (YPD) and Caenorhabditis elegans Proteome Database (WormPD):: comprehensive resources for the organization and comparison of model organism protein information [J].
Costanzo, MC ;
Hogan, JD ;
Cusick, ME ;
Davis, BP ;
Fancher, AM ;
Hodges, PE ;
Kondu, P ;
Lengieza, C ;
Lew-Smith, JE ;
Lingner, C ;
Roberg-Perez, KJ ;
Tillberg, M ;
Brooks, JE ;
Garrels, JI .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :73-76
[10]  
DAHL GA, 1980, CANCER RES, V40, P1194