Heisenberg spins on a cylinder section

被引:2
作者
Benoit, J [1 ]
Dandoloff, R
Saxena, A
机构
[1] Univ Cergy Pontoise, Lab Phys Theor & Modelisat, F-95302 Cergy Pontoise, France
[2] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2000年 / 14卷 / 19-20期
关键词
D O I
10.1142/S0217979200001242
中图分类号
O59 [应用物理学];
学科分类号
摘要
Classical Heisenberg spins in the continuum limit (i.e. the nonlinear sigma -model) are studied on an elastic cylinder section with homogeneous boundary conditions. The latter may serve as a physical realization of magnetically coated microtubules and cylindrical membranes. The corresponding rigid cylinder model exhibits topological soliton configurations with geometrical frustration due to the finite length of the cylinder section. Assuming small and smooth deformations allows to find shapes of the elastic support by relaxing the rigidity constraint: an inhomogeneous Lame equation arises. Finally, this leads to a novel geometric effect: a global shrinking of the cylinder section with swellings.
引用
收藏
页码:2093 / 2100
页数:8
相关论文
共 24 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS
[2]  
Arscott FM., 1964, Periodic Differential Equations: An Introduction to Mathieu, Lame and Allied Functions
[3]   INSTABILITY AND PEARLING STATES PRODUCED IN TUBULAR MEMBRANES BY COMPETITION OF CURVATURE AND TENSION [J].
BARZIV, R ;
MOSES, E .
PHYSICAL REVIEW LETTERS, 1994, 73 (10) :1392-1395
[4]  
BELAVIN AA, 1975, JETP LETT+, V22, P245
[5]  
BENOIT J, 1999, THESIS U CERGY PONTO
[6]  
BOGOMOLNYI EB, 1976, SOV J NUCL PHYS+, V24, P449
[8]   LOW-TEMPERATURE BEHAVIOR OF TWO-DIMENSIONAL QUANTUM ANTIFERROMAGNETS [J].
CHAKRAVARTY, S ;
HALPERIN, BI ;
NELSON, DR .
PHYSICAL REVIEW LETTERS, 1988, 60 (11) :1057-1060
[9]   MAGNETIC SOLITONS AND ELASTIC KINK-LIKE EXCITATIONS IN COMPRESSIBLE HEISENBERG CHAIN [J].
CIEPLAK, M ;
TURSKI, LA .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1980, 13 (28) :L777-L780
[10]   VIOLATION OF SELF-DUALITY FOR TOPOLOGICAL SOLITONS DUE TO SOLITON SOLITON INTERACTION ON A CYLINDRICAL GEOMETRY [J].
DANDOLOFF, R ;
VILLAINGUILLOT, S ;
SAXENA, A ;
BISHOP, AR .
PHYSICAL REVIEW LETTERS, 1995, 74 (05) :813-815