Fault detection and diagnosis of permanent-magnet DC motor based on parameter estimation and neural network

被引:125
作者
Liu, XQ [1 ]
Zhang, HY
Liu, J
Yang, J
机构
[1] Beijing Univ Aeronaut & Astronaut, Dept Automat Control, Beijing 100083, Peoples R China
[2] China Hewlett Packard Co Ltd, Beijing 100022, Peoples R China
关键词
block-pulse function series; fault detection and diagnosis; neural network; parameter estimation; permanent-magnet dc motor;
D O I
10.1109/41.873210
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, fault detection and diagnosis of a permanent-magnet de motor is discussed. Parameter estimation based on block-pulse function series is used to estimate the continuous-time model of the motor. The electromechanical parameters of the motor can be obtained from the estimated model parameters. The relative changes of electromechanical parameters are used to detect motor faults. A multilayer perceptron neural network is used to isolate faults based on the patterns of parameter changes. Experiments with a real motor validate the feasibility of the combined use of parameter estimation and neural network classification for fault detection and isolation of the motor.
引用
收藏
页码:1021 / 1030
页数:10
相关论文
共 15 条
[1]  
Chan C. W., 1999, Proceedings of the 14th World Congress. International Federation of Automatic Control, P511
[2]   ON THE APPLICATION AND DESIGN OF ARTIFICIAL NEURAL NETWORKS FOR MOTOR FAULT-DETECTION .1. [J].
CHOW, MY ;
SHARPE, RN ;
HUNG, JC .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 1993, 40 (02) :181-188
[3]  
Filbert D., 1988, Measurement, V6, P69, DOI 10.1016/0263-2241(88)90005-X
[4]  
Filbert D., 1995, P EL MOT, V2, P159
[5]   NEURAL NETWORKS AIDED ONLINE DIAGNOSTICS OF INDUCTION-MOTOR ROTOR FAULTS [J].
FILIPPETTI, F ;
FRANCESCHINI, G ;
TASSONI, C .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 1995, 31 (04) :892-899
[6]  
Filippetti F., 1992, Conference Record of the IEEE Industry Applications Society Annual Meeting (Cat. No.92CH3146-8), P92, DOI 10.1109/IAS.1992.244459
[7]   USING A NEURAL FUZZY SYSTEM TO EXTRACT HEURISTIC KNOWLEDGE OF INCIPIENT FAULTS IN INDUCTION-MOTORS .1. METHODOLOGY [J].
GOODE, PV ;
CHOW, M .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 1995, 42 (02) :131-138
[8]  
Isermann R., 1994, P IFAC S SAFERPROCES, V2, P597
[9]  
LEE KS, 1997, P 2 AS CONTR C SEOUL, P83
[10]  
Schneider C., 1994, P IFAC FAULT DET SAF, P701