Differential regulation of two Period genes in the Xenopus eye

被引:48
作者
Zhuang, MH [1 ]
Wang, YX [1 ]
Steenhard, BM [1 ]
Besharse, JC [1 ]
机构
[1] Med Coll Wisconsin, Dept Cell Biol Neurobiol & Anat, Milwaukee, WI 53226 USA
来源
MOLECULAR BRAIN RESEARCH | 2000年 / 82卷 / 1-2期
关键词
circadian rhythms; Period gene; retina; pigment epithelium; Xenopus;
D O I
10.1016/S0169-328X(00)00177-7
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The recent identification and analysis of mammalian homologues of the well characterized Drosophila circadian clock gene, Period (Per), has led to the idea that key features of vertebrate circadian rhythmicity are conserved at the molecular level. The Xenopus laevis retina contains a circadian clock mechanism that can be studied in vitro. To study the rhythmic expression of Per in the Xenopus retina, we used a degenerate RT-PCR strategy to obtain cDNA clones covering the entire 1427 amino acid coding region of a Xenopus homologue of Per2 and a partial cDNA sequence for a Xenopus homologue of Per1. Northern blot analysis shows that xPer1 and xPer2 transcripts are expressed most abundantly in the eye and the brain. However, rhythmic expression of xPer2 transcripts in the retina and retinal pigment epithelium (RPE) is light dependent and occurs only under 12 h light/12 h dark (LD) conditions, not in constant dark (DD). In contrast, xPer1 mRNA accumulation is rhythmic under both LD and DD conditions. Light dependent regulation of xPeR2 mRNA and circadian regulation of xPer1 mRNA in the Xenopus retina differs from that in Drosophila and mammals. Light dependence of xPer2 mRNA levels and the offset phase relationship of the xPer2 rhythm to that for xPer1 suggests a role for xPer2 in circadian entrainment. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:52 / 64
页数:13
相关论文
共 70 条
[1]  
Adler R., 1986, RETINA MODEL CELL BI, P297, DOI [10.1016/B978-0-12-044275-1.50014-4, DOI 10.1016/B978-0-12-044275-1.50014-4]
[2]   A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light [J].
Albrecht, U ;
Sun, ZS ;
Eichele, G ;
Lee, CC .
CELL, 1997, 91 (07) :1055-1064
[3]   A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless [J].
Allada, R ;
White, NE ;
So, WV ;
Hall, JC ;
Rosbash, M .
CELL, 1998, 93 (05) :791-804
[4]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[5]  
ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
[6]   Functional identification of the mouse circadian Clock gene by transgenic BAC rescue [J].
Antoch, MP ;
Song, EJ ;
Chang, AM ;
Vitaterna, MH ;
Zhao, YL ;
Wilsbacher, LD ;
Sangoram, AM ;
King, DP ;
Pinto, LH ;
Takahashi, JS .
CELL, 1997, 89 (04) :655-667
[7]   Circadian regulation of a Drosophila homolog of the mammalian Clock gene:: PER and TIM function as positive regulators [J].
Bae, K ;
Lee, C ;
Sidote, D ;
Chuang, KY ;
Edery, I .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (10) :6142-6151
[8]   PHOTORECEPTOR SHEDDING IS INITIATED BY LIGHT IN FROG RETINA [J].
BASINGER, S ;
HOFFMAN, R ;
MATTHES, M .
SCIENCE, 1976, 194 (4269) :1074-1076
[9]  
BAYLIES MK, 1993, MOL GENETICS BIOL RH, P123
[10]   CIRCADIAN CLOCK IN XENOPUS EYE CONTROLLING RETINAL SEROTONIN N-ACETYLTRANSFERASE [J].
BESHARSE, JC ;
IUVONE, PM .
NATURE, 1983, 305 (5930) :133-135