The transient phase of amorphous calcium carbonate in sea urchin larval spicules: The involvement of proteins and magnesium ions in its formation and stabilization

被引:292
作者
Raz, S [1 ]
Hamilton, PC
Wilt, FH
Weiner, S
Addadi, L
机构
[1] Weizmann Inst Sci, Dept Biol Struct, IL-76100 Rehovot, Israel
[2] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
关键词
D O I
10.1002/adfm.200304285
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Amorphous calcium carbonate (ACC) is a precursor phase of calcite in the formation of the sea urchin larval spicule. The goal of this research is to study the formation and stabilization mode of this transient phase. We first characterized the mineralogy of the spicules from the sea urchin Strongylocentrotus purpuratus. We then examined the role of the macromolecules extracted from the spicules at different growth stages in the formation of transient ACC in vitro. The biogenic amorphous transient phase is shown to be both structurally and compositionally different from the known stable ACC phases. It does not contain bound water, and is thus the first dehydrated ACC phase to be detected. The macromolecules that were extracted at early stages of spicule growth, when the amorphous content of the biogenic mineral is high, induced the formation of transient ACC in vitro in the presence of magnesium ions. In contrast, the macromolecules extracted at a later stage, when the spicules are completely crystalline, induced the formation of single crystals of low magnesian calcite. We therefore deduce that the macromolecules from the sea urchin larval spicules together with magnesium ions, mediate the transient formation of ACC as a precursor to calcite. These observations may well provide novel ideas for improved materials synthesis.
引用
收藏
页码:480 / 486
页数:7
相关论文
共 26 条
[1]   Stabilization of amorphous calcium carbonate by specialized macromolecules in biological and synthetic precipitates [J].
Aizenberg, J ;
Lambert, G ;
Addadi, L ;
Weiner, S .
ADVANCED MATERIALS, 1996, 8 (03) :222-&
[2]   Factors involved in the formation of amorphous and crystalline calcium carbonate: A study of an ascidian skeleton [J].
Aizenberg, J ;
Lambert, G ;
Weiner, S ;
Addadi, L .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (01) :32-39
[3]   Cellular control over spicule formation in sea urchin embryos: A structural approach [J].
Beniash, E ;
Addadi, L ;
Weiner, S .
JOURNAL OF STRUCTURAL BIOLOGY, 1999, 125 (01) :50-62
[4]   Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth [J].
Beniash, E ;
Aizenberg, J ;
Addadi, L ;
Weiner, S .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1997, 264 (1380) :461-465
[5]  
BENSON SC, 1992, CALCIFICATION BIOL S
[6]   SOLUBILITY OF AMORPHOUS CALCIUM-CARBONATE [J].
BRECEVIC, L ;
NIELSEN, AE .
JOURNAL OF CRYSTAL GROWTH, 1989, 98 (03) :504-510
[7]   PHARMACEUTICAL SOLIDS - A STRATEGIC APPROACH TO REGULATORY CONSIDERATIONS [J].
BYRN, S ;
PFEIFFER, R ;
GANEY, M ;
HOIBERG, C ;
POOCHIKIAN, G .
PHARMACEUTICAL RESEARCH, 1995, 12 (07) :945-954
[8]  
FernandezDiaz L, 1996, J SEDIMENT RES, V66, P482
[9]   What is the true solubility advantage for amorphous pharmaceuticals? [J].
Hancock, BC ;
Parks, M .
PHARMACEUTICAL RESEARCH, 2000, 17 (04) :397-404
[10]  
Hasse B, 2000, CHEM-EUR J, V6, P3679, DOI 10.1002/1521-3765(20001016)6:20<3679::AID-CHEM3679>3.0.CO