Saturated ideal modes in advanced tokamak regimes in MAST

被引:154
作者
Chapman, I. T. [1 ]
Hua, M. -D. [1 ,2 ]
Pinches, S. D. [1 ]
Akers, R. J. [1 ]
Field, A. R. [1 ]
Graves, J. P. [3 ]
Hastie, R. J. [1 ]
Michael, C. A. [1 ]
机构
[1] EURATOM CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[2] Univ London Imperial Coll Sci Technol & Med, London SW7 2BY, England
[3] Ecole Polytech Fed Lausanne, Assoc Euratom Confederat Suisse, Ctr Rech Phys Plasmas, CH-1015 Lausanne, Switzerland
基金
英国工程与自然科学研究理事会;
关键词
INTERNAL KINK MODE; DIII-D; MHD STABILITY; MAGNETOHYDRODYNAMIC STABILITY; PLASMA ROTATION; STABILIZATION; INSTABILITIES; DISCHARGES; SCENARIO; PHYSICS;
D O I
10.1088/0029-5515/50/4/045007
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
MAST plasmas with a safety factor above unity and a profile with either weakly reversed shear or broad low-shear regions, regularly exhibit long-lived saturated ideal magnetohydrodynamic (MHD) instabilities. The toroidal rotation is flattened in the presence of such perturbations and the fast ion losses are enhanced. These ideal modes, distinguished as such by the notable lack of islands or signs of reconnection, are driven unstable as the safety factor approaches unity. This could be of significance for advanced scenarios, or hybrid scenarios which aim to keep the safety factor just above rational surfaces associated with deleterious resistive MHD instabilities, especially in spherical tokamaks which are more susceptible to such ideal internal modes. The role of rotation, fast ions and ion diamagnetic effects in determining the marginal mode stability is discussed, as well as the role of instabilities with higher toroidal mode numbers as the safety factor evolves to lower values.
引用
收藏
页数:16
相关论文
共 93 条
[1]   NONLINEAR STATE OF M=1 INSTABILITY IN TOKAMAKS WITH NONMONOTONIC Q PROFILES [J].
AVINASH ;
HASTIE, RJ ;
TAYLOR, JB ;
COWLEY, SC .
PHYSICAL REVIEW LETTERS, 1987, 59 (23) :2647-2649
[2]   The technology and science of steady-state operation in magnetically confined plasmas [J].
Becoulet, A. ;
Hoang, G. T. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2008, 50 (12)
[3]   DIFFUSION DRIVEN PLASMA CURRENTS AND BOOTSTRAP TOKAMAK [J].
BICKERTON, RJ ;
CONNOR, JW ;
TAYLOR, JB .
NATURE-PHYSICAL SCIENCE, 1971, 229 (04) :110-+
[4]   Error field amplification and rotation damping in tokamak plasmas [J].
Boozer, AH .
PHYSICAL REVIEW LETTERS, 2001, 86 (22) :5059-5061
[5]   SIMULATIONS OF DEUTERIUM TRITIUM EXPERIMENTS IN TFTR [J].
BUDNY, RV ;
BELL, MG ;
BIGLARI, H ;
BITTER, M ;
BUSH, CE ;
CHENG, CZ ;
FREDRICKSON, ED ;
GREK, B ;
HILL, KW ;
HSUAN, H ;
JANOS, AC ;
JASSBY, DL ;
JOHNSON, DW ;
JOHNSON, LC ;
LEBLANC, B ;
MCCUNE, DC ;
MIKKELSEN, DR ;
PARK, HK ;
RAMSEY, AT ;
SABBAGH, SA ;
SCOTT, SD ;
SCHIVELL, JF ;
STRACHAN, JD ;
STRATTON, BC ;
SYNAKOWSKI, EJ ;
TAYLOR, G ;
ZARNSTORFF, MC ;
ZWEBEN, SJ .
NUCLEAR FUSION, 1992, 32 (03) :429-447
[6]   MHD activity in FTU plasmas with reversed magnetic shear [J].
Buratti, P ;
Alladio, F ;
Micozzi, P ;
Tudisco, O ;
Acitelli, L ;
Angelini, B ;
Apicella, ML ;
Apruzzese, G ;
Barbato, E ;
Bertocchi, A ;
Bracco, G ;
Bruschi, A ;
Buceti, G ;
Cardinali, A ;
Centioli, C ;
Cesario, R ;
Ciattaglia, S ;
Ciotti, M ;
Cirant, S ;
Cocilovo, V ;
Crisanti, F ;
De Angelis, R ;
De Marco, F ;
Esposito, B ;
Frigione, D ;
Gabellieri, L ;
Gatti, G ;
Giovannozzi, E ;
Gourlan, C ;
Granucci, G ;
Grolli, M ;
Imparato, A ;
Kroegler, H ;
Leigheb, M ;
Lovisetto, L ;
Maddaluno, G ;
Maffia, G ;
Mancuso, A ;
Marinucci, M ;
Mazzitelli, G ;
Mirizzi, F ;
Orsitto, FP ;
Pacella, D ;
Panaccione, L ;
Panella, M ;
Ridolfini, VP ;
Pieroni, L ;
Podda, S ;
Righetti, GB ;
Romanelli, F .
PLASMA PHYSICS AND CONTROLLED FUSION, 1997, 39 :B383-B394
[7]  
BURATTI P, 2008, 35 EPS C PLASM PHYS
[8]  
BURATTI P, 2009, 36 EPS C PLASM PHYS
[9]   INTERNAL KINK MODES IN TOROIDAL PLASMAS WITH CIRCULAR CROSS-SECTIONS [J].
BUSSAC, MN ;
PELLAT, R ;
EDERY, D ;
SOULE, JL .
PHYSICAL REVIEW LETTERS, 1975, 35 (24) :1638-1641
[10]  
Challis C.D., 2009, 36 EPS C PLASM PHYS, pP5172