Crystal structures of substrate binding to Bacillus subtilis holo-(acyl carrier protein) synthase reveal a novel trimeric arrangement of molecules resulting in three active sites

被引:204
作者
Parris, KD
Lin, L
Tam, A
Mathew, R
Hixon, J
Stahl, M
Fritz, CC
Seehra, J
Somers, WS
机构
[1] Wyeth Ayerst Res, Biol Chem, Cambridge, MA 02140 USA
[2] Millennium Pharmaceut Inc, Cambridge, MA 02140 USA
来源
STRUCTURE WITH FOLDING & DESIGN | 2000年 / 8卷 / 08期
关键词
acyl carrier protein; coenzyme A; fatty acid biosynthesis; phosphopantetheinyl transferase; three-dimensional structure; X-ray crystallography;
D O I
10.1016/S0969-2126(00)00178-7
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Holo-(acyl carrier protein) synthase (AcpS), a member of the phosphopantetheinyl transferase superfamily, plays a crucial role in the functional activation of acyl carrier protein (ACP) in the fatty acid biosynthesis pathway. AcpS catalyzes the attachment of the 4'-phosphopantetheinyl moiety of coenzyme A (CoA) to the sidechain of a conserved serine residue on apo-ACP. Results: We describe here the first crystal structure of a type II ACP from Bacillus subtilis in complex with its activator AcpS at 2.3 Angstrom. We also have determined the structures of AcpS alone (at 1.8 Angstrom) and AcpS in complex with CoA (at 1.5 Angstrom). These structures reveal that AcpS exists as a trimer, A catalytic center is located at each of the solvent-exposed interlaces between AcpS molecules. Site-directed mutagenesis studies confirm the importance of trimer formation in AcpS activity. Conclusions: The active site in AcpS is only formed when two AcpS molecules dimerize, The addition of a third molecule allows for the formation of two additional active sites and also permits a large hydrophobic surface from each molecule of AcpS to be buried in the trimer. The mutations Ile5-->Arg, Gln113-->Glu and Gln113-->Arg show that AcpS is inactive when unable to form a trimer, The co-crystal structures of AcpS-CoA and AcpS-ACP allow us to propose a catalytic mechanism for this class of 4'-phosphopantetheinyl transferases.
引用
收藏
页码:883 / 895
页数:13
相关论文
共 41 条
[1]   INHA, A GENE ENCODING A TARGET FOR ISONIAZID AND ETHIONAMIDE IN MYCOBACTERIUM-TUBERCULOSIS [J].
BANERJEE, A ;
DUBNAU, E ;
QUEMARD, A ;
BALASUBRAMANIAN, V ;
UM, KS ;
WILSON, T ;
COLLINS, D ;
DELISLE, G ;
JACOBS, WR .
SCIENCE, 1994, 263 (5144) :227-230
[2]  
BERGLER H, 1994, J BIOL CHEM, V269, P5493
[3]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[4]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[5]   Ribbons [J].
Carson, M .
MACROMOLECULAR CRYSTALLOGRAPHY, PT B, 1997, 277 :493-505
[6]   Crystal structure of the histone acetyltransferase domain of the human PCAF transcriptional regulator bound to coenzyme A [J].
Clements, A ;
Rojas, JR ;
Trievel, RC ;
Wang, L ;
Berger, SL ;
Marmorstein, R .
EMBO JOURNAL, 1999, 18 (13) :3521-3532
[7]   The D-alanyl carrier protein in Lactobacillus casei: Cloning, sequencing, and expression of dltC [J].
Debabov, DV ;
Heaton, MP ;
Zhang, QY ;
Stewart, KD ;
Lambalot, RH ;
Neuhaus, FC .
JOURNAL OF BACTERIOLOGY, 1996, 178 (13) :3869-3876
[8]   Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods [J].
delaFortelle, E ;
Bricogne, G .
MACROMOLECULAR CRYSTALLOGRAPHY, PT A, 1997, 276 :472-494
[9]   CRYSTAL-STRUCTURE AND FUNCTION OF THE ISONIAZID TARGET OF MYCOBACTERIUM-TUBERCULOSIS [J].
DESSEN, A ;
QUEMARD, A ;
BLANCHARD, JS ;
JACOBS, WR ;
SACCHETTINI, JC .
SCIENCE, 1995, 267 (5204) :1638-1641
[10]  
ELOVSON J, 1968, J BIOL CHEM, V243, P3603