The Midline Glia of Drosophila:: a molecular genetic model for the developmental functions of Glia

被引:110
作者
Jacobs, JR [1 ]
机构
[1] McMaster Univ, Dept Biol, Hamilton, ON L8S 4K1, Canada
基金
英国医学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/S0301-0082(00)00016-2
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The Midline Glia of Drosophila are required for nervous system morphogenesis and midline axon guidance during embryogenesis. In origin, gene expression and function, this lineage is analogous to the floorplate of the vertebrate neural tube. The expression or function of over 50 genes, summarised here, has been linked to the Midline Glia. Like the floorplate, the cells which generate the Midline Glia lineage, the mesectoderm, are determined by the interaction of ectoderm and mesoderm during gastrulation. Determination and differentiation of the Midline Glia involves the Drosophila EGF, Notch and segment polarity signaling pathways, as well as twelve identified transcription factors. The Midline Glia lineage has two phases of cell proliferation and of programmed cell death. During embryogenesis, the EGF receptor pathway signaling and Wrapper protein both function to suppress apoptosis only in those MG which are appropriately positioned to separate and ensheath midline axonal commissures. Apoptosis during metamorphosis is regulated by the insect steroid, Ecdysone. The Midline Glia participate in both the attraction of axonal growth cones towards the midline, as well as repulsion of growth cones from the midline. Midline axon guidance requires the Drosophila orthologs of vertebrate genes expressed in the floorplate, which perform the same function. Genetic and molecular evidence of the interaction of attractive (Netrin) and repellent (Slit) signaling is reviewed and summarised in a model. The Midline Glia participate also in the generation of extracellular matrix and in trophic interactions with axons. Genetic evidence for these functions is reviewed. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:475 / 508
页数:34
相关论文
共 256 条
[1]   An emerging blueprint for apoptosis in Drosophila [J].
Abrams, JM .
TRENDS IN CELL BIOLOGY, 1999, 9 (11) :435-440
[2]   In vitro analysis of a mammalian retinal progenitor that gives rise to neurons and glia [J].
Ahmad, I ;
Dooley, CM ;
Thoreson, WB ;
Rogers, JA ;
Afiat, S .
BRAIN RESEARCH, 1999, 831 (1-2) :1-10
[3]   The gcm-motif: A novel DNA-binding motif conserved in Drosophila and mammals [J].
Akiyama, Y ;
Hosoya, T ;
Poole, AM ;
Hotta, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (25) :14912-14916
[4]  
Anderson MG, 1996, DEVELOPMENT, V122, P4169
[5]   DRIFTER, A DROSOPHILA POU-DOMAIN TRANSCRIPTION FACTOR, IS REQUIRED FOR CORRECT DIFFERENTIATION AND MIGRATION OF TRACHEAL CELLS AND MIDLINE GLIA [J].
ANDERSON, MG ;
PERKINS, GL ;
CHITTICK, P ;
SHRIGLEY, RJ ;
JOHNSON, WA .
GENES & DEVELOPMENT, 1995, 9 (01) :123-137
[6]  
[Anonymous], 1893, J MORPHOL, DOI DOI 10.1002/JMOR.1050080102
[7]   Common ground plans in early brain development in mice and flies [J].
Arendt, D ;
NublerJung, K .
BIOESSAYS, 1996, 18 (03) :255-259
[8]  
Arendt D, 1999, DEVELOPMENT, V126, P2309
[9]   Notch signaling: Cell fate control and signal integration in development [J].
Artavanis-Tsakonas, S ;
Rand, MD ;
Lake, RJ .
SCIENCE, 1999, 284 (5415) :770-776
[10]   Glia as mediators of growth cone guidance: studies from insect nervous systems [J].
Auld, V .
CELLULAR AND MOLECULAR LIFE SCIENCES, 1999, 55 (11) :1377-1385