Interplay between ballooning and peeling modes in simulations of the time evolution of edge localized modes

被引:14
作者
Onjun, T [1 ]
Kritz, AH
Bateman, G
Parail, V
Wilson, HR
Dnestrovskij, A
机构
[1] Srindhorn Inst Inst Technol, Pathum Thani 12121, Thailand
[2] Lehigh Univ, Dept Phys, Bethlehem, PA 18015 USA
[3] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[4] Russian Sci Ctr, IV Kurchatov Atom Energy Inst, Moscow, Russia
基金
欧盟地平线“2020”;
关键词
D O I
10.1063/1.1832600
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The time evolution of edge localized modes (ELMs) in the Joint European Torus tokamak [P. H. Rebut et al., Nucl. Fusion 25, 1011 (1985)] is investigated using the JETTO predictive modeling code [M. Erba et al., Plasma Phys. Controlled Fusion 39, 261 (1997)]. It is found that both pressure-driven ballooning and current-driven peeling modes can play a role in triggering the ELM crashes. In the simulations carried out, each large ELM consists of a sequence of quasicontinuous small ELM crashes. Each sequence of ELM crashes is separated from the next sequence by a relatively longer ELM-free period. The initial crash in each ELM sequence can be triggered either by a pressure-driven ballooning mode or by a current-driven peeling mode, while the subsequent crashes within that sequence are triggered by current-driven peeling modes, which are made more unstable by the reduction in the pressure gradient resulting from the initial crash. The HELENA and MISHKA ideal magnetohydrodynamic stability codes [A. B. Mikhailovskii et al., Plasma Phys. Rep. 23, 713 (1997)] are used to validate the stability criteria used in the JETTO simulations. This stability analysis includes infinite-n ideal ballooning, finite-n ballooning, and low-n kink/peeling modes. (C) 2005 American Institute of Physics.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 25 条
[1]   The ITER design [J].
Aymar, R ;
Barabaschi, P ;
Shimomura, Y .
PLASMA PHYSICS AND CONTROLLED FUSION, 2002, 44 (05) :519-565
[2]  
CENACCHI G, 1988, JETIR, V3
[3]   Magnetohydrodynamic stability of tokamak edge plasmas [J].
Connor, JW ;
Hastie, RJ ;
Wilson, HR ;
Miller, RL .
PHYSICS OF PLASMAS, 1998, 5 (07) :2687-2700
[4]   Comparisons and physics basis of tokamak transport models and turbulence simulations [J].
Dimits, AM ;
Bateman, G ;
Beer, MA ;
Cohen, BI ;
Dorland, W ;
Hammett, GW ;
Kim, C ;
Kinsey, JE ;
Kotschenreuther, M ;
Kritz, AH ;
Lao, LL ;
Mandrekas, J ;
Nevins, WM ;
Parker, SE ;
Redd, AJ ;
Shumaker, DE ;
Sydora, R ;
Weiland, J .
PHYSICS OF PLASMAS, 2000, 7 (03) :969-983
[5]   Development of a non-local model for tokamak heat transport in L-mode, H-mode and transient regimes [J].
Erba, M ;
Cherubini, A ;
Parail, VV ;
Springmann, E ;
Taroni, A .
PLASMA PHYSICS AND CONTROLLED FUSION, 1997, 39 (02) :261-276
[6]   STUDY OF GIANT EDGE-LOCALIZED MODES IN DIII-D AND COMPARISON WITH BALLOONING THEORY [J].
GOHIL, P ;
MAHDAVI, MA ;
LAO, L ;
BURRELL, KH ;
CHU, MS ;
DEBOO, JC ;
HSIEH, CL ;
OHYABU, N ;
SNIDER, RT ;
STAMBAUGH, RD ;
STOCKDALE, RE .
PHYSICAL REVIEW LETTERS, 1988, 61 (14) :1603-1606
[7]   Performance near operational boundaries [J].
Horton, LD ;
Christiansen, JP ;
Lingertat, J ;
Maggi, CF ;
Mertens, V ;
Pogutse, O ;
Saibene, G ;
Sartori, R ;
Stober, J ;
Suttrop, W .
PLASMA PHYSICS AND CONTROLLED FUSION, 1999, 41 :B329-B341
[8]   Bootstrap current and neoclassical transport in tokamaks of arbitrary collisionality and aspect ratio [J].
Houlberg, WA ;
Shaing, KC ;
Hirshman, SP ;
Zarnstorff, MC .
PHYSICS OF PLASMAS, 1997, 4 (09) :3230-3242
[9]   Identification of external kink modes in JET [J].
Huysmans, GTA ;
Hender, TC ;
Alper, B .
NUCLEAR FUSION, 1998, 38 (02) :179-187
[10]   MHD stability of optimized shear discharges in JET [J].
Huysmans, GTA ;
Hender, TC ;
Alper, B ;
Baranov, YF ;
Borba, D ;
Conway, GD ;
Cottrell, GA ;
Gormezano, C ;
Helander, P ;
Kwon, OJ ;
Nave, MFF ;
Sips, ACC ;
Söldner, FX ;
Strait, EJ ;
Zwingmann, WP .
NUCLEAR FUSION, 1999, 39 (11) :1489-1507