On the geometrical material structure of anelasticity

被引:58
作者
Epstein, M [1 ]
Maugin, GA [1 ]
机构
[1] UNIV PARIS 06,MODELISAT MECAN LAB,URA CNRS 229,F-75252 PARIS 05,FRANCE
关键词
D O I
10.1007/BF01187433
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
G-structures are the geometric backbone of the theory of material uniformity in continuum mechanics. Within this geometric framework, anelasticity is seen as a result of evolving distributions of inhomogeneity reflected as material nonintegrability. Constitutive principles governing the time evolution of the G-structure underlying the finite-strain theory of anelasticity (e.g., plasticity) are proposed. The material Eshelby stress tensor is shown to be the driving force behind this evolution. This should allow for a thermodynamically admissible formulation of anelasticity viewed as a G-structure evolution.
引用
收藏
页码:119 / 131
页数:13
相关论文
共 16 条
[1]  
BLOOM F, 1979, LECTURE NOTES MATH, V733
[2]  
Cleja-igoiu S., 1990, App Mech Rev, V43, P131
[3]   REMARKS ON UNIFORMITY IN HYPERELASTIC MATERIALS [J].
COHEN, H ;
EPSTEIN, M .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1984, 20 (03) :233-243
[4]   G-STRUCTURES AND MATERIAL HOMOGENEITY [J].
ELZANOWSKI, M ;
EPSTEIN, M ;
SNIATYCKI, J .
JOURNAL OF ELASTICITY, 1990, 23 (2-3) :167-180
[5]   THE ENERGY-MOMENTUM TENSOR AND MATERIAL UNIFORMITY IN FINITE ELASTICITY [J].
EPSTEIN, M ;
MAUGIN, GA .
ACTA MECHANICA, 1990, 83 (3-4) :127-133
[6]  
EPSTEIN M, 1994, THERMOELASTIC MATERI
[7]  
EPSTEIN M, 1992, NONLINEAR THERMOMECH, V61, P147
[8]   ELASTIC-PLASTIC DEFORMATION AT FINITE STRAINS [J].
LEE, EH .
JOURNAL OF APPLIED MECHANICS, 1969, 36 (01) :1-&
[9]  
Lubliner J, 1990, PLASTICITY THEORY
[10]  
Mandel J., 1973, International Journal of Solids and Structures, V9, P725, DOI 10.1016/0020-7683(73)90120-0