Dirichlet and Neumann boundary conditions: What is in between?

被引:40
作者
Arendt, W [1 ]
Warma, M [1 ]
机构
[1] Univ Ulm, Abt Angew Anal, D-89069 Ulm, Germany
关键词
Dirichlet forms; Dirichlet; Neumann and Robin boundary conditions;
D O I
10.1007/s000280300005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given an admissible measure mu on partial derivativeOmega where Omega subset of R(n) is an open set, we define a realization Delta(mu) of the Laplacian in L(2)(Omega) with general Robin boundary conditions and we show that Delta(mu) generates a holomorphic C(0)-semigroup on L(2)(Omega) which is sandwiched by the Dirichlet Laplacian and the Neumann Laplacian semigroups. Moreover, under a locality and a regularity assumption, the generator of each sandwiched semigroup is of the form Delta(mu). We also show that if D(Delta(mu)) contains smooth functions, then mu is of the form dmu = betadsigma (where sigma is the (n - 1)-dimensional Hausdorff measure and beta a positive measurable bounded function on a partial derivativeOmega); i.e. we have the classical Robin boundary conditions.
引用
收藏
页码:119 / 135
页数:17
相关论文
共 24 条
[1]  
[Anonymous], 1993, POTENTIAL ANAL, DOI DOI 10.1007/BF01048510
[2]  
[Anonymous], REV MAT COMPLUT
[3]  
[Anonymous], 1989, CAMBRIDGE TRACTS MAT
[4]   DOMINATION AND ERGODICITY FOR POSITIVE SEMIGROUPS [J].
ARENDT, W ;
BATTY, CJK .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 114 (03) :743-747
[5]   ASYMPTOTIC STABILITY OF SCHRODINGER SEMIGROUPS ON L1(RN) [J].
ARENDT, W ;
BATTY, CJK ;
BENILAN, P .
MATHEMATISCHE ZEITSCHRIFT, 1992, 209 (04) :511-518
[6]  
Arendt W, 2001, LECT NOTES PURE APPL, V215, P1
[7]  
Arendt W., 2001, VECTOR VALUED LAPLAC, DOI DOI 10.1007/978-3-0348-5075-9
[8]  
ARENDT W, 2003, IN PRESS POTENTIAL A
[9]   ASYMPTOTIC STABILITY OF SCHRODINGER SEMIGROUPS - PATH INTEGRAL METHODS [J].
BATTY, CJK .
MATHEMATISCHE ANNALEN, 1992, 292 (03) :457-492
[10]  
BENILAN P, 1991, LECT NOTES PURE APPL, V135, P41