A hybrid smoothing method for mixed nonlinear complementarity problems

被引:11
作者
Gabriel, SA [1 ]
机构
[1] ICF Kaiser Int Inc, Fairfax, VA 22031 USA
关键词
nonlinear complementarity problem; smoothing; Newton's method;
D O I
10.1023/A:1018311004565
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we describe a new, integral-based smoothing method for solving the mixed nonlinear complementarity problem (MNCP). This approach is based on recasting MNCP as finding the zero of a nonsmooth system and then generating iterates via two types of smooth approximations to this system. Under weak regularity conditions, we establish that the sequence of iterates converges to a solution if the limit point of this sequence is regular. In addition, we show that the rate is Q-linear, Q-superlinear, or Q-quadratic depending on the level of inexactness in the subproblem calculations and we make use of the inexact Newton theory of Dembo, Eisenstat, and Steihaug. Lastly, we demonstrate the viability of the proposed method by presenting the results of numerical tests on a variety of complementarity problems.
引用
收藏
页码:153 / 173
页数:21
相关论文
共 26 条
[1]  
AASHTIANI H, 1979, THESIS MIT CAMBRIDGE
[2]   NEWTONS METHOD FOR LINEAR COMPLEMENTARITY-PROBLEMS [J].
AGANAGIC, M .
MATHEMATICAL PROGRAMMING, 1984, 28 (03) :349-362
[3]  
BILLUPS SC, 1997, IN PRESS MATH PROG, V76, P533
[4]  
CHEN BT, 1995, CONTINUATION METHOD
[5]  
CHEN BT, 1997, IN PRESS SIAM J OPT, V7, P403
[6]  
Chen C. H., 1996, COMPUTATIONAL OPTIMI, V5, P97
[7]   A semismooth equation approach to the solution of nonlinear complementarity problems [J].
DeLuca, T ;
Facchinei, F ;
Kanzow, C .
MATHEMATICAL PROGRAMMING, 1996, 75 (03) :407-439
[8]   INEXACT NEWTON METHODS [J].
DEMBO, RS ;
EISENSTAT, SC ;
STEIHAUG, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (02) :400-408
[9]  
Dirkse Steven P., 1995, Optim. Methods Softw., V5, P123, DOI DOI 10.1080/10556789508805606
[10]  
Eaves B., 1971, Math. Program, V1, P68, DOI [10.1007/BF01584073, DOI 10.1007/BF01584073]