Probable values of the cosmological constant in a holographic theory

被引:431
作者
Horava, P [1 ]
Minic, D
机构
[1] USC, CIT, Ctr Theoret Phys, Pasadena, CA 91125 USA
[2] CALTECH, Pasadena, CA 91125 USA
[3] Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA
关键词
D O I
10.1103/PhysRevLett.85.1610
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We point out that for a large class of universes, holography implies that the most probable value for the cosmological constant is zero. In four space-time dimensions, the probability distribution takes the Baum-Hawking form, dP similar to exp(cM(p)(2)/Lambda)d Lambda.
引用
收藏
页码:1610 / 1613
页数:4
相关论文
共 34 条
[1]   Cosmology - The cosmic triangle: Revealing the state of the universe [J].
Bahcall, NA ;
Ostriker, JP ;
Perlmutter, S ;
Steinhardt, PJ .
SCIENCE, 1999, 284 (5419) :1481-1488
[2]   PROLEGOMENA TO A THEORY OF BIFURCATING UNIVERSES - A NONLOCAL SOLUTION TO THE COSMOLOGICAL CONSTANT PROBLEM OR LITTLE-LAMBDA GOES BACK TO THE FUTURE [J].
BANKS, T .
NUCLEAR PHYSICS B, 1988, 309 (03) :493-512
[3]  
BANKS T, HEPTH9601151
[4]   ZERO COSMOLOGICAL CONSTANT FROM MINIMUM ACTION [J].
BAUM, E .
PHYSICS LETTERS B, 1983, 133 (3-4) :185-186
[5]   UNIVERSAL UPPER BOUND ON THE ENTROPY-TO-ENERGY RATIO FOR BOUNDED SYSTEMS [J].
BEKENSTEIN, JD .
PHYSICAL REVIEW D, 1981, 23 (02) :287-298
[6]   MICROCANONICAL FUNCTIONAL INTEGRAL FOR THE GRAVITATIONAL-FIELD [J].
BROWN, JD ;
YORK, JW .
PHYSICAL REVIEW D, 1993, 47 (04) :1420-1431
[7]  
BUOSSO R, HEPTH9906022
[8]  
BUOSSO R, HEPTH9911002
[9]  
BUOSSO R, HEPTH9905177
[10]  
BURGESS CP, HEPTH9911164