A Controllable Self-Assembly Method for Large-Scale Synthesis of Graphene Sponges and Free-Standing Graphene Films

被引:223
作者
Liu, Fei [1 ,2 ]
Seo, Tae Seok [1 ,2 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, Program BK21, Taejon 305701, South Korea
[2] Korea Adv Inst Sci & Technol, Inst BioCentury, Taejon 305701, South Korea
关键词
AQUEOUS DISPERSIONS; EPITAXIAL GRAPHENE; GRAPHITE OXIDE; SHEETS; CARBON; TRANSPARENT;
D O I
10.1002/adfm.201000287
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A simple method to prepare large-scale graphene sponges and free-standing graphene films using a speed vacuum concentrator is presented. During the centrifugal evaporation process, the graphene oxide (GO) sheets in the aqueous suspension are assembled to generate network-linked GO sponges or a series of multilayer GO films, depending on the temperature of a centrifugal vacuum chamber. While sponge-like bulk GO materials (GO sponges) are produced at 40 degrees C, uniform free-standing GO films of size up to 9 cm(2) are generated at 80 degrees C. The thickness of GO films can be controlled from 200 nm to 1 mu m based on the concentration of the GO colloidal suspension and evaporation temperature. The synthesized GO films exhibit excellent transparency, typical fluorescent emission signal, and high flexibility with a smooth surface and condensed density. Reduced GO sponges and films with less than 5 wt% oxygen are produced through a thermal annealing process at 800 degrees C with H(2)/Ar flow. The structural flexibility of the reduced GO sponges, which have a highly porous, interconnected, 3D network, as well as excellent electrochemical properties of the reduced GO film with respect to electrode kinetics for the [Fe(CN)(6)](3-)/(4-) redox system, are demonstrated.
引用
收藏
页码:1930 / 1936
页数:7
相关论文
共 32 条
[1]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[2]   Self-Assembled Free-Standing Graphite Oxide Membrane [J].
Chen, Chengmeng ;
Yang, Quan-Hong ;
Yang, Yonggang ;
Lv, Wei ;
Wen, Yuefang ;
Hou, Peng-Xiang ;
Wang, Maozhang ;
Cheng, Hui-Ming .
ADVANCED MATERIALS, 2009, 21 (29) :3007-3011
[3]   Preparation and characterization of graphene oxide paper [J].
Dikin, Dmitriy A. ;
Stankovich, Sasha ;
Zimney, Eric J. ;
Piner, Richard D. ;
Dommett, Geoffrey H. B. ;
Evmenenko, Guennadi ;
Nguyen, SonBinh T. ;
Ruoff, Rodney S. .
NATURE, 2007, 448 (7152) :457-460
[4]   Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material [J].
Eda, Goki ;
Fanchini, Giovanni ;
Chhowalla, Manish .
NATURE NANOTECHNOLOGY, 2008, 3 (05) :270-274
[5]   Blue Photoluminescence from Chemically Derived Graphene Oxide [J].
Eda, Goki ;
Lin, Yun-Yue ;
Mattevi, Cecilia ;
Yamaguchi, Hisato ;
Chen, Hsin-An ;
Chen, I-Sheng ;
Chen, Chun-Wei ;
Chhowalla, Manish .
ADVANCED MATERIALS, 2010, 22 (04) :505-+
[6]  
EIZENBERG M, 1979, SURF SCI, V82, P228, DOI 10.1016/0039-6028(79)90330-3
[7]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[8]   Graphene: Status and Prospects [J].
Geim, A. K. .
SCIENCE, 2009, 324 (5934) :1530-1534
[9]   Graphene: Exploring carbon flatland [J].
Geim, Andrey K. ;
MacDonald, Allan H. .
PHYSICS TODAY, 2007, 60 (08) :35-41
[10]   Aqueous dispersions of TCNQ-anion-stabilized graphene sheets [J].
Hao, Rui ;
Qian, Wen ;
Zhang, Luhui ;
Hou, Yanglong .
CHEMICAL COMMUNICATIONS, 2008, (48) :6576-6578