Three monophyletic superfamilies account for the majority of the known glycosyltransferases

被引:166
作者
Liu, J
Mushegian, A
机构
[1] Stowers Inst Med Res, Kansas City, MO 64110 USA
[2] Univ Kansas, Med Ctr, Dept Microbiol Mol Genet & Immunol, Kansas City, KS 66160 USA
关键词
glycosyltransferases; exostosin; fringe; egghead; protein sequence evolution;
D O I
10.1110/ps.0302103
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Sixty-five families of glycosyltransferases (EC 2.4.x.y) have been recognized on the basis of high-sequence similarity to a founding member with experimentally demonstrated enzymatic activity. Although distant sequence relationships between some of these families have been reported, the natural history of glycosyltransferases is poorly understood. We used iterative searches of sequence databases, motif extraction, structural comparison, and analysis of completely sequenced genomes to track the origins of modem-type glycosyltransferases. We show that >75% of recognized glycosyltransferase families belong to one of only three monophyletic, superfamilies of proteins, namely, (1) a recently described GPGTF/GT-B superfamily; (2) a nucleoside-diphosphosugar transferase (GT-A) superfamily, which is characterized by a DxD sequence signature and also includes nucleotidyltransferases; and (3) a GT-C superfamily of integral membrane glycosyltransferases with a modified DxD signature in the first extracellular loop. Several developmental regulators in Metazoans, including Fringe and Egghead homologs, belong to the second superfamily. Interestingly, Tout-velu/Exostosin family of developmental proteins found in all multicellular eukaryotes, contains separate domains belonging to the first and the second superfamilies, explaining multiple glycosyltransferase activities in one protein.
引用
收藏
页码:1418 / 1431
页数:14
相关论文
共 72 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   Protein repeats: Structures, functions, and evolution [J].
Andrade, MA ;
Perez-Iratxeta, C ;
Ponting, CP .
JOURNAL OF STRUCTURAL BIOLOGY, 2001, 134 (2-3) :117-131
[3]  
[Anonymous], 1995, COMPLEMENT
[4]   Gleaning non-trivial structural, functional and evolutionary information about proteins by iterative database searches [J].
Aravind, L ;
Koonin, EV .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 287 (05) :1023-1040
[5]   Monophyly of class I aminoacyl tRNA synthetase, USPA, ETFP, photolyase, and PP-ATPase nucleotide-binding domains: Implications for protein evolution in the RNA world [J].
Aravind, L ;
Anantharaman, V ;
Koonin, EV .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2002, 48 (01) :1-14
[6]   Trends in protein evolution inferred from sequence and structure analysis [J].
Aravind, L ;
Mazumder, R ;
Vasudevan, S ;
Koonin, EV .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2002, 12 (03) :392-399
[7]  
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkh121, 10.1093/nar/gkr1065]
[8]   Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion [J].
Bellaiche, Y ;
The, I ;
Perrimon, N .
NATURE, 1998, 394 (6688) :85-88
[9]   The structural basis of the catalytic mechanism and regulation of glucose-1-phosphate thymidylyltransferase (RmlA) [J].
Blankenfeldt, W ;
Asuncion, M ;
Lam, JS ;
Naismith, JH .
EMBO JOURNAL, 2000, 19 (24) :6652-6663
[10]   Glycoside hydrolases and glycosyltransferases: families and functional modules [J].
Bourne, Y ;
Henrissat, B .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2001, 11 (05) :593-600