Modeling longitudinal data with ordinal response by varying coefficients

被引:14
作者
Kauermann, G [1 ]
机构
[1] Univ Munich, Inst Stat, D-80799 Munich, Germany
关键词
generalized estimating equations; kernel regression; longitudinal data; nonparametric regression; ordinal data; smoothing; varying coefficient model;
D O I
10.1111/j.0006-341X.2000.00692.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents a smooth regression model for ordinal data with longitudinal dependence structure. A marginal model with cumulative logit link is applied to cope with the ordinal scale and the main and covariate effects in the model are allowed to vary with time. Local fitting is pursued and asymptotic properties of the estimates are discussed. In a second step, the longitudinal dependence of the observations is considered. Cumulative log odds ratios are fitted locally, which allows investigation of how the longitudinal dependence of the ordinal observations changes with time.
引用
收藏
页码:692 / 698
页数:7
相关论文
共 24 条
[1]   Local estimating equations [J].
Carroll, RJ ;
Ruppert, D ;
Welsh, AH .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (441) :214-227
[2]  
Diggle P. J., 2002, ANAL LONGITUDINAL DA
[3]   TESTING FOR RANDOM DROPOUTS IN REPEATED MEASUREMENT DATA [J].
DIGGLE, PJ .
BIOMETRICS, 1989, 45 (04) :1255-1258
[4]   Regression analysis of forest damage by marginal models for correlated ordinal responses [J].
Fahrmeir, L ;
Pritscher, L .
ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 1996, 3 (03) :257-268
[5]   An application of isotonic longitudinal marginal regression to monitoring the healing process [J].
Fahrmeir, L ;
Gieger, C ;
Heumann, C .
BIOMETRICS, 1999, 55 (03) :951-956
[6]  
Fahrmeir L., 1994, MULTIVARIATE STAT MO, DOI 10.1007/978-1-4899-0010-4
[7]  
FITZMAURICE GM, 1995, J ROY STAT SOC B MET, V57, P691
[8]  
GIEGER C, 1997, 71 SFB L MAX U I STA
[9]  
HART JD, 1991, J ROY STAT SOC B MET, V53, P173
[10]   KERNEL REGRESSION ESTIMATION USING REPEATED MEASUREMENTS DATA [J].
HART, JD ;
WEHRLY, TE .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1986, 81 (396) :1080-1088