A new LDA-based face recognition system which can solve the small sample size problem

被引:1184
作者
Chen, LF
Liao, HYM [1 ]
Ko, MT
Lin, JC
Yu, GJ
机构
[1] Acad Sinica, Inst Informat Sci, Taipei, Taiwan
[2] Natl Cent Univ, Inst Comp Sci & Informat Engn, Chungli 32054, Taiwan
[3] Natl Chiao Tung Univ, Dept Comp & Informat Sci, Hsinchu 30050, Taiwan
关键词
face recognition; feature extraction; linear discriminant analysis; linear algebra;
D O I
10.1016/S0031-3203(99)00139-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new LDA-based face recognition system is presented in this papal. Linear discriminant analysis (LDA) is one of the most popular linear projection techniques for feature extraction. The major drawback of applying LDA is that it may encounter the small sample size problem. In this paper, we propose a new LDA-based technique which can solve the small sample size problem. We also prove that the most expressive vectors derived ill the null space of the within-class scatter matrix using principal component analysis (PCA) are equal to the optimal discriminant vectors derived in the: original space using LDA. The experimental results show that the new LDA process improves the performance of a face recognition system significantly. (C) 2000 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1713 / 1726
页数:14
相关论文
共 26 条
[1]   Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection [J].
Belhumeur, PN ;
Hespanha, JP ;
Kriegman, DJ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (07) :711-720
[2]   FACE RECOGNITION - FEATURES VERSUS TEMPLATES [J].
BRUNELLI, R ;
POGGIO, T .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1993, 15 (10) :1042-1052
[3]   HUMAN AND MACHINE RECOGNITION OF FACES - A SURVEY [J].
CHELLAPPA, R ;
WILSON, CL ;
SIROHEY, S .
PROCEEDINGS OF THE IEEE, 1995, 83 (05) :705-740
[4]  
CHEN LF, 1998, P 1998 S IM SPEECH S, P225
[5]   OPTIMAL FISHER DISCRIMINANT-ANALYSIS USING THE RANK DECOMPOSITION [J].
CHENG, YQ ;
ZHUANG, YM ;
YANG, JY .
PATTERN RECOGNITION, 1992, 25 (01) :101-111
[6]  
Fisher A, 1923, MATH THEORY PROBABIL
[7]   OPTIMAL SET OF DISCRIMINANT VECTORS [J].
FOLEY, DH ;
SAMMON, JW .
IEEE TRANSACTIONS ON COMPUTERS, 1975, C 24 (03) :281-289
[8]  
Fukunaga K., 1990, INTRO STAT PATTERN R
[9]  
Gonzalez R.C., 1992, DIGITAL IMAGE PROCES
[10]   Face recognition system using local autocorrelations and multiscale integration [J].
Goudail, F ;
Lange, E ;
Iwamoto, T ;
Kyuma, K ;
Otsu, N .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1996, 18 (10) :1024-1028