The particle swarm optimization algorithm: convergence analysis and parameter selection

被引:1889
作者
Trelea, IC [1 ]
机构
[1] INA PG, UMR Genie & Microbiol Proc Alimentaires, F-78850 Thiverval Grignon, France
关键词
particle swarm optimization; stochastic optimization; analysis of algorithms; parallel algorithms;
D O I
10.1016/S0020-0190(02)00447-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The particle swarm optimization algorithm is analyzed using standard results from the dynamic system theory. Graphical parameter selection guidelines are derived. The exploration-exploitation tradeoff is discussed and illustrated. Examples of performance on benchmark functions superior to previously published results are given. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:317 / 325
页数:9
相关论文
共 5 条
[1]   The particle swarm - Explosion, stability, and convergence in a multidimensional complex space [J].
Clerc, M ;
Kennedy, J .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (01) :58-73
[2]  
Clerc M., 2002, Proceedings of the 1999 Congress on Evolutionary Computation, DOI DOI 10.1109/CEC.1999.785513
[3]  
Eberhart RC, 2000, IEEE C EVOL COMPUTAT, P84, DOI 10.1109/CEC.2000.870279
[4]  
Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968
[5]  
Kennedy J., 2001, SWARM INTELLIGENCE