Cherbn-Simons reduction and non-Abelian fluid mechanics

被引:44
作者
Jackiw, R [1 ]
Nair, VP
Pi, SY
机构
[1] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
[2] Boston Univ, Dept Phys, Boston, MA 02215 USA
[3] CUNY City Coll, Dept Phys, New York, NY 10031 USA
关键词
D O I
10.1103/PhysRevD.62.085018
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We propose a non-Abelian generalization of the Clebsch parametrization for a vector in three dimensions. The construction is based on a group-theoretical reduction of the Chern-Simons form on a symmetric space. The formalism is then used to give a canonical (symplectic) discussion of non-Abelian fluid mechanics, analogous to the way the Abelian Clebsch parametrization allows a canonical description of conventional fluid mechanics.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 22 条
[1]   NON-LINEAR MODELS AS GAUGE-THEORIES [J].
BALACHANDRAN, AP ;
STERN, A ;
TRAHERN, G .
PHYSICAL REVIEW D, 1979, 19 (08) :2416-2425
[2]   THE TOPOLOGICAL PROPERTIES OF MAGNETIC HELICITY [J].
BERGER, MA ;
FIELD, GB .
JOURNAL OF FLUID MECHANICS, 1984, 147 (OCT) :133-148
[3]  
CRONSTROM C, 1986, J MATH PHYS, V27, P419, DOI 10.1063/1.527349
[4]   ON TOPOLOGICAL BOUNDARY CHARACTERISTICS IN NON-ABELIAN GAUGE-THEORY [J].
CRONSTROM, C ;
MICKELSSON, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (10) :2528-2531
[5]  
DESER S, 1988, ANN PHYS-NEW YORK, V185, P406
[6]   TOPOLOGICALLY MASSIVE GAUGE-THEORIES [J].
DESER, S ;
JACKIW, R ;
TEMPLETON, S .
ANNALS OF PHYSICS, 1982, 140 (02) :372-411
[7]   Partially dual variables in SU(2) Yang-Mills theory [J].
Faddeev, L ;
Niemi, AJ .
PHYSICAL REVIEW LETTERS, 1999, 82 (08) :1624-1627
[8]   Decomposing the Yang-Mills field [J].
Faddeev, L ;
Niemi, AJ .
PHYSICS LETTERS B, 1999, 464 (1-2) :90-93
[9]   Fluid dynamical profiles and constants of motion from d-branes [J].
Jackiw, R ;
Polychronakos, AP .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 207 (01) :107-129
[10]   Supersymmetric fluid mechanics [J].
Jackiw, R ;
Polychronakos, AP .
PHYSICAL REVIEW D, 2000, 62 (08) :1-6