Metal-dependent DNA cleavage mechanism of the I-CreI LAGLIDADG homing endonuclease

被引:48
作者
Chevalier, B
Sussman, D
Otis, C
Noël, AJ
Turmel, M
Lemieux, C
Stephens, K
Monnat, RJ
Stoddard, BL
机构
[1] Fred Hutchinson Canc Res Ctr, Seattle, WA 98109 USA
[2] Univ Washington, Grad Program Mol & Cellular Biol, Seattle, WA 98109 USA
[3] Univ Washington, Dept Genet, Seattle, WA 98109 USA
[4] Univ Washington, Dept Pathol, Seattle, WA 98109 USA
[5] Univ Laval, Dept Biochim, Program Evolutionary Biol, Quebec City, PQ G1K 7P4, Canada
关键词
D O I
10.1021/bi048970c
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The LAGLIDADG homing endonucleases include free-standing homodimers, pseudosymmetric monomers, and related enzyme domains embedded within inteins. DNA-bound structures of homodimeric I-CreI and monomeric I-SceI indicate that three catalytic divalent metal ions are distributed across a pair of overlapping active sites, with one shared metal participating in both strand cleavage reactions. These structures differ in the precise position and binding interactions of the metals. We have studied the metal dependence for the I-CreI homodimer using site-directed mutagenesis of active site residues and assays of binding affinity and cleavage activity. We have also reassessed the binding of a nonactivating metal ion (calcium) in the wild-type enzyme-substrate complex, and determined the DNA-bound structure of two inactive enzyme mutants. The conclusion of these studies is that the catalytic mechanism of symmetric LAGLIDADG homing, endonucleases, and probably many of their monomeric cousins, involves a canonical two-metal mechanism in each of two active sites, which are chemically and structurally tethered to one another by a shared metal ion. Failure to occupy the shared metal site, as observed in the presence of calcium or when the metal-binding side chain from the LAGLIDADG motif (Asp 20) is mutated to asparagine. prevents cleavage by the enzyme.
引用
收藏
页码:14015 / 14026
页数:12
相关论文
共 42 条
[1]   Mechanisms of intron mobility [J].
Belfort, M ;
Perlman, PS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (51) :30237-30240
[2]   Homing endonucleases: keeping the house in order [J].
Belfort, M ;
Roberts, RJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3379-3388
[3]   Structural and biochemical analyses of DNA and RNA binding by a bifunctional homing endonuclease and group I intron splicing factor [J].
Bolduc, JM ;
Spiegel, PC ;
Chatterjee, P ;
Brady, KL ;
Downing, ME ;
Caprara, MG ;
Waring, RB ;
Stoddard, BL .
GENES & DEVELOPMENT, 2003, 17 (23) :2875-2888
[4]   ASSESSMENT OF PHASE ACCURACY BY CROSS VALIDATION - THE FREE R-VALUE - METHODS AND APPLICATIONS [J].
BRUNGER, AT .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1993, 49 :24-36
[5]  
Brunger AT, 1998, ACTA CRYSTALLOGR D, V54, P905, DOI 10.1107/s0907444998003254
[6]   Flexible DNA target site recognition by divergent homing endonuclease isoschizomers I-CreI and I-MsoI [J].
Chevalier, B ;
Turmel, M ;
Lemieux, C ;
Monnat, RJ ;
Stoddard, BL .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 329 (02) :253-269
[7]   Design, activity, and structure of a highly specific artificial endonuclease [J].
Chevalier, BS ;
Kortemme, T ;
Chadsey, MS ;
Baker, D ;
Monnat, RJ ;
Stoddard, BL .
MOLECULAR CELL, 2002, 10 (04) :895-905
[8]   Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility [J].
Chevalier, BS ;
Stoddard, BL .
NUCLEIC ACIDS RESEARCH, 2001, 29 (18) :3757-3774
[9]   The homing endonuclease I-CreI uses three metals, one of which ss shared between the two active sites [J].
Chevalier, BS ;
Monnat, RJ ;
Stoddard, BL .
NATURE STRUCTURAL BIOLOGY, 2001, 8 (04) :312-316
[10]   Explosive invasion of plant mitochondria by a group I intron [J].
Cho, Y ;
Qiu, YL ;
Kuhlman, P ;
Palmer, JD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (24) :14244-14249