A scheme for process-tagged SO4 and BC aerosols in NCAR CCM3:: Validation and sensitivity to cloud processes -: art. no. 4751

被引:46
作者
Iversen, T [1 ]
Seland, O [1 ]
机构
[1] Univ Oslo, Dept Geophys, N-0315 Oslo, Norway
关键词
aerosols; sulfate; black carbon; clouds; climate;
D O I
10.1029/2001JD000885
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
[1] A life cycle scheme for sulfate (SO4) and black carbon (BC) is implemented in an extended version of the National Center for Atmospheric Research (NCAR) Community Climate Model 3 (CCM3). The scheme includes emissions of dimethyl sulfide (DMS), SO2, and sulfate of natural and anthropogenic origins and emissions of BC from biomass burning and fossil fuel combustion. Chemistry and aerosol physics are parameterized based on prescribed oxidant levels and background aerosols of marine, continental, and polar origins. Aqueous chemistry depends on estimated exchange rate of cloudy and clear air. Particulate SO4 and BC are tagged by-production mechanisms for off-line reconstruction of aerosol optical and water activity properties. With emissions from International Panel on Climate Change (IPCC), calculations without feedback produce atmospheric turnover times (days) of 1.5 (SO2), 3.5 (SO4), and 4.7 (BC) for the year 2000 and 1.6 (SO2), 4.0 (SO4), and 4.7 (BC) for the year 2100 A2 emission scenario. The modeled SOx compounds compare within a factor 2 with observations at ground level in North America and Europe and for SO4 in the free troposphere. For BC, the ground-level concentrations are well within a factor 10 from observations over several regions. BC and SO4 are a factor 10 too low in Arctic winter, which can partly be linked to spurious low-level winter cloudiness. SO4 and BC are a factor 10 too high at ground-level low latitudes, and upper tropospheric SO2 is largely missing. These major model biases are caused by neglected transport and low scavenging efficiency in cumulus clouds. Cloud processes are discussed by sensitivity tests. SO4 and BC are found very sensitive to the vertical transport and scavenging in convective clouds. More research should aim at improved cloud parameterization schemes that address key processes associated with aerosols to reduce uncertainties associated with climate effects of anthropogenic aerosols.
引用
收藏
页码:XLXXI / XLXXII
页数:30
相关论文
共 89 条
[1]   ABSORPTION OF VISIBLE RADIATION IN ATMOSPHERE CONTAINING MIXTURES OF ABSORBING AND NON-ABSORBING PARTICLES [J].
ACKERMAN, TP ;
TOON, OB .
APPLIED OPTICS, 1981, 20 (20) :3661-3668
[2]   AEROSOLS, CLOUD MICROPHYSICS, AND FRACTIONAL CLOUDINESS [J].
ALBRECHT, BA .
SCIENCE, 1989, 245 (4923) :1227-1230
[3]  
[Anonymous], International Geophysics, DOI DOI 10.1016/S0074-6142(08)60210-7
[4]  
[Anonymous], 2001, Climate Change 2001:Impacts, Adaptation and Vulnerability
[5]   ARCTIC AIR-POLLUTION - AN OVERVIEW OF CURRENT KNOWLEDGE [J].
BARRIE, LA .
ATMOSPHERIC ENVIRONMENT, 1986, 20 (04) :643-663
[6]   A comparison of large-scale atmospheric sulphate aerosol models (COSAM):: overview and highlights [J].
Barrie, LA ;
Yi, Y ;
Leaitch, WR ;
Lohmann, U ;
Kasibhatla, P ;
Roelofs, GJ ;
Wilson, J ;
McGovern, F ;
Benkovitz, C ;
Mélières, MA ;
Law, K ;
Prospero, J ;
Kritz, M ;
Bergmann, D ;
Bridgeman, C ;
Chin, M ;
Christensen, J ;
Easter, R ;
Feichter, J ;
Land, C ;
Jeuken, A ;
Kjellström, E ;
Koch, D ;
Rasch, P .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2001, 53 (05) :615-645
[7]   Measurements of atmospheric gas-phase and aqueous-phase hydrogen peroxide concentrations in winter on the east coast of the United States [J].
Barth, M. C. ;
Hegg, D. A. ;
Hobbs, P. V. ;
Walega, J. G. ;
Kok, G. L. ;
Heikes, B. G. ;
Lazrus, A. L. .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 1989, 41 (01) :61-69
[8]   Sulfur chemistry in the National Center for Atmospheric Research Community Climate Model: Description, evaluation, features, and sensitivity to aqueous chemistry [J].
Barth, MC ;
Rasch, PJ ;
Kiehl, JT ;
Benkovitz, CM ;
Schwartz, SE .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2000, 105 (D1) :1387-1415
[9]   A global three-dimensional chemical transport model for the troposphere .1. Model description and CO and ozone results [J].
Berntsen, TK ;
Isaksen, ISA .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1997, 102 (D17) :21239-21280
[10]   OCEANIC PHYTOPLANKTON, ATMOSPHERIC SULFUR, CLOUD ALBEDO AND CLIMATE [J].
CHARLSON, RJ ;
LOVELOCK, JE ;
ANDREAE, MO ;
WARREN, SG .
NATURE, 1987, 326 (6114) :655-661