Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2

被引:47412
作者
Love, Michael I. [1 ,2 ,3 ,4 ]
Huber, Wolfgang [3 ]
Anders, Simon [3 ]
机构
[1] Dana Farber Canc Inst, Dept Biostat & Computat Biol, Boston, MA 02115 USA
[2] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[3] European Mol Biol Lab, Genome Biol Unit, D-69117 Heidelberg, Germany
[4] Max Planck Inst Mol Genet, Dept Computat Mol Biol, D-14195 Berlin, Germany
来源
GENOME BIOLOGY | 2014年 / 15卷 / 12期
基金
美国国家卫生研究院; 欧盟第七框架计划;
关键词
IDENTIFYING DIFFERENTIAL EXPRESSION; SEQUENCING DATA; CLASSIFICATION; VARIABILITY; INFERENCE; POWERFUL; GENES;
D O I
10.1186/s13059-014-0550-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. The DESeq2 package is available at http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html.
引用
收藏
页数:38
相关论文
共 64 条
[1]  
Anders S., 2010, GENOME BIOL, V11, pR106, DOI [10.1186/gb-2010-11-10-r106, DOI 10.1186/gb-2010-11-10-r106]
[2]   HTSeq-a Python']Python framework to work with high-throughput sequencing data [J].
Anders, Simon ;
Pyl, Paul Theodor ;
Huber, Wolfgang .
BIOINFORMATICS, 2015, 31 (02) :166-169
[3]   Detecting differential usage of exons from RNA-seq data [J].
Anders, Simon ;
Reyes, Alejandro ;
Huber, Wolfgang .
GENOME RESEARCH, 2012, 22 (10) :2008-2017
[4]  
[Anonymous], BIOINFORMATICS
[5]  
[Anonymous], 2001, In all likelihood: statistical modelling and inference using likelihood
[6]  
[Anonymous], SPLICINGGRAPHS CREAT
[7]  
[Anonymous], THESIS STANFORD U
[8]  
[Anonymous], HDB MATH FUNCTIONS D
[9]  
[Anonymous], GENOMICALIGNMENTS RE
[10]  
[Anonymous], 1983, Generalized Linear Models