Intercomparison study of six HTDMAs: results and recommendations

被引:94
作者
Duplissy, J. [1 ]
Gysel, M. [1 ]
Sjogren, S. [1 ]
Meyer, N. [2 ]
Good, N. [3 ]
Kammermann, L. [1 ]
Michaud, V. [4 ]
Weigel, R. [4 ]
dos Santos, S. Martins [5 ]
Gruening, C. [5 ]
Villani, P. [4 ]
Laj, P. [4 ]
Sellegri, K. [4 ]
Metzger, A. [1 ]
McFiggans, G. B. [3 ]
Wehrle, G. [1 ]
Richter, R. [1 ]
Dommen, J. [1 ]
Ristovski, Z. [2 ]
Baltensperger, U. [1 ]
Weingartner, E. [1 ]
机构
[1] Paul Scherrer Inst, Lab Atmospher Chem, CH-5232 Villigen, Switzerland
[2] Queensland Univ Technol, Int Lab Air Qual & Hlth, Brisbane, Qld 4000, Australia
[3] Univ Manchester, Ctr Atmospher Sci, Manchester M13 9PL, Lancs, England
[4] Univ Blaise Pascal, Lab Meteorol Phys, F-63000 Clermont Ferrand, France
[5] Joint Res Ctr, Climate Change Unit, I-21027 Ispra, Italy
基金
瑞士国家科学基金会;
关键词
HYGROSCOPIC GROWTH; AEROSOL-PARTICLES; H-TDMA; VOLATILE PROPERTIES; AMMONIUM-SULFATE; LOW-TEMPERATURES; TANDEM DMA; PART II; DELIQUESCENCE; KINETICS;
D O I
10.5194/amt-2-363-2009
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
We report on an intercomparison of six different hygroscopicity tandem differential mobility analysers (HTDMAs). These HTDMAs are used worldwide in laboratory experiments and field campaigns to measure the water uptake of aerosol particles and have never been intercompared. After an investigation of the different design of the instruments with their advantages and inconveniencies, the methods for calibration, validation and data analysis are presented. Measurements of nebulised ammonium sulphate as well as of secondary organic aerosol generated from a smog chamber were performed. Agreement and discrepancies between the instruments and to the theory are discussed, and final recommendations for a standard instrument are given, as a benchmark for laboratory or field experiments to ensure a high quality of HTDMA data.
引用
收藏
页码:363 / 378
页数:16
相关论文
共 42 条
[1]  
[Anonymous], 2006, ATMOS CHEM PHYS
[2]   Relating CCN activity, volatility, and droplet growth kinetics of β-caryophyllene secondary organic aerosol [J].
Asa-Awuku, A. ;
Engelhart, G. J. ;
Lee, B. H. ;
Pandis, S. N. ;
Nenes, A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (03) :795-812
[3]   Prompt deliquescence and efflorescence of aerosol nanoparticles [J].
Biskos, G. ;
Paulsen, D. ;
Russell, L. M. ;
Buseck, P. R. ;
Martin, S. T. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2006, 6 :4633-4642
[4]  
Brechtel FJ, 2000, J ATMOS SCI, V57, P1872, DOI 10.1175/1520-0469(2000)057<1872:PPCSFH>2.0.CO
[5]  
2
[6]   Mass transfer effects in hygroscopic measurements of aerosol particles [J].
Chan, MN ;
Chan, CK .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2005, 5 :2703-2712
[7]   Measurement of the timescale of hygroscopic growth for atmospheric aerosols [J].
Chuang, PY .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D9)
[8]  
Cocker DR, 2001, AEROSOL SCI TECH, V35, P637, DOI 10.1080/027868201316899992
[9]   A novel model to predict the physical state of atmospheric H2SO4/NH3/H2O aerosol particles [J].
Colberg, CA ;
Luo, BP ;
Wernli, H ;
Koop, T ;
Peter, T .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2003, 3 :909-924
[10]   Deliquescence and hygroscopic growth of mixed inorganic-organic atmospheric aerosol [J].
Cruz, CN ;
Pandis, SN .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2000, 34 (20) :4313-4319