A unique loop in the DNA-binding crevice of bacteriophage T7 DNA polymerase influences primer utilization

被引:17
作者
Chowdhury, K [1 ]
Tabor, S [1 ]
Richardson, CC [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA
关键词
D O I
10.1073/pnas.230448397
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The three-dimensional structure of bacteriophage T7 DNA polymerase reveals the presence of a loop of 4 aa (residues 401-404) within the DNA-binding groove; this loop is not present in other members of the DNA polymerase I family. A genetically altered T7 DNA polymerase, T7 pol Delta 401-404, lacking these residues, has been characterized biochemically. The polymerase activity of T7 pol Delta 401-404 on primed M13 single-stranded DNA template is one-third of the wild-type enzyme and has a 3'-to-5' exonuclease activity indistinguishable from that of wild-type T7 DNA polymerase. T7 pol Delta 401-404 polymerizes nucleotides processively on a primed M13 single-stranded DNA template. T7 DNA polymerase cannot initiate de novo DNA synthesis; it requires tetraribonucleotides synthesized by the primase activity of the T7 gene 4 protein to serve as primers. T7 primase-dependent DNA synthesis on single-stranded DNA is 3- to 6-fold less with T7 pol Delta 401-404 compared with the wild-type enzyme. Furthermore, the altered polymerase is defective (10-fold) in its ability to use preformed tetraribonucleotides to initiate DNA synthesis in the presence of gene 4 protein. The location of the loop places it in precisely the position to interact with the tetraribonucleotide primer and, presumably, with the T7 gene 4 primase. Gene 4 protein also provides helicase activity for the replication of duplex DNA. T7 pol Delta 401-404 and T7 gene 4 protein catalyze strand-displacement DNA synthesis at nearly the same rate as does wild-type polymerase and T7 gene 4 protein, suggesting that the coupling of helicase and polymerase activities is unaffected.
引用
收藏
页码:12469 / 12474
页数:6
相关论文
共 49 条
[1]   The thioredoxin binding domain of bacteriophage T7 DNA polymerase confers processivity on Escherichia coli DNA polymerase I [J].
Bedford, E ;
Tabor, S ;
Richardson, CC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (02) :479-484
[2]   CRYSTAL-STRUCTURES OF THE KLENOW FRAGMENT OF DNA-POLYMERASE-I COMPLEXED WITH DEOXYNUCLEOSIDE TRIPHOSPHATE AND PYROPHOSPHATE [J].
BEESE, LS ;
FRIEDMAN, JM ;
STEITZ, TA .
BIOCHEMISTRY, 1993, 32 (51) :14095-14101
[3]  
BERNSTEIN JA, 1988, J BIOL CHEM, V263, P14891
[4]  
BERNSTEIN JA, 1989, J BIOL CHEM, V264, P13066
[5]   A 7-KDA REGION OF THE BACTERIOPHAGE-T7 GENE-4 PROTEIN IS REQUIRED FOR PRIMASE BUT NOT FOR HELICASE ACTIVITY [J].
BERNSTEIN, JA ;
RICHARDSON, CC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (02) :396-400
[6]   COORDINATION OF LEADING AND LAGGING-STRAND DNA-SYNTHESIS AT THE REPLICATION FORK OF BACTERIOPHAGE-T7 [J].
DEBYSER, Z ;
TABOR, S ;
RICHARDSON, CC .
CELL, 1994, 77 (01) :157-166
[7]   Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution [J].
Doublié, S ;
Tabor, S ;
Long, AM ;
Richardson, CC ;
Ellenberger, T .
NATURE, 1998, 391 (6664) :251-258
[8]   COMPLETE NUCLEOTIDE-SEQUENCE OF BACTERIOPHAGE-T7 DNA AND THE LOCATIONS OF T7 GENETIC ELEMENTS [J].
DUNN, JJ ;
STUDIER, FW .
JOURNAL OF MOLECULAR BIOLOGY, 1983, 166 (04) :477-535
[9]   Structure of Taq polymerase with DNA at the polymerase active site [J].
Eom, SH ;
Wang, JM ;
Steitz, TA .
NATURE, 1996, 382 (6588) :278-281
[10]   SETOR - HARDWARE-LIGHTED 3-DIMENSIONAL SOLID MODEL REPRESENTATIONS OF MACROMOLECULES [J].
EVANS, SV .
JOURNAL OF MOLECULAR GRAPHICS, 1993, 11 (02) :134-&