Calculation of Wilson loops in two-dimensional Yang-Mills theories

被引:3
作者
Aroca, JM [1 ]
Kubyshin, Y [1 ]
机构
[1] Univ Politecn Catalunya, Dept Matemat Aplicada & Telemat, ES-08034 Barcelona, Spain
关键词
D O I
10.1006/aphy.2000.6044
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The vacuum expectation value of the Wilson loop functional in pure Yang-Mills theory on an arbitrary two-dimensional orientable manifold is studied. We consider the calculation of this quantity for the Abelian theory in the continuum case and for the arbitrary gauge group and arbitrary lattice action in the lattice case. A classification of topological sectors of the theory and the related classification of the principal fibre bundles over two-dimensional surfaces are given in terms of a cohomology group. The contribution of SU(2)-invariant connections to the vacuum expectation value of the Wilson loop variable is also analyzed and is shown to be similar to the contribution of monopoles. (C) 2000 Academic Press.
引用
收藏
页码:11 / 56
页数:46
相关论文
共 73 条
[1]   SU(2)-invariant reduction of (3+1)-dimensional Ashtekar gravity [J].
Alexandrov, S ;
Grigentch, I ;
Vassilevich, D .
CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (03) :573-580
[2]  
[Anonymous], 1981, GEOMETRY PARTICLES F
[3]  
[Anonymous], GENERALIZED FUNCTION
[4]   THE LAGRANGIAN LOOP REPRESENTATION OF LATTICE-U(1) GAUGE-THEORY [J].
AROCA, JM ;
BAIG, M ;
FORT, H .
PHYSICS LETTERS B, 1994, 336 (01) :54-61
[5]   SU(N) quantum Yang-Mills theory in two dimensions: A complete solution [J].
Ashtekar, A ;
Lewandowski, J ;
Marolf, D ;
Mourao, J ;
Thiemann, T .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (11) :5453-5482
[6]   PROJECTIVE TECHNIQUES AND FUNCTIONAL-INTEGRATION FOR GAUGE-THEORIES [J].
ASHTEKAR, A ;
LEWANDOWSKI, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (05) :2170-2191
[7]   PLANAR ROTOR - THE THETA-VACUUM STRUCTURE, AND SOME APPROXIMATE METHODS IN QUANTUM-MECHANICS [J].
ASOREY, M ;
ESTEVE, JG ;
PACHECO, AF .
PHYSICAL REVIEW D, 1983, 27 (08) :1852-1868
[8]   ELECTROMAGNETISM WITHOUT MONOPOLES IS POSSIBLE IN NONTRIVIAL U(1)-FIBER BUNDLES [J].
ASOREY, M ;
BOYA, LJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1979, 20 (11) :2327-2329
[9]   THE MOMENT MAP AND EQUIVARIANT CO-HOMOLOGY [J].
ATIYAH, MF ;
BOTT, R .
TOPOLOGY, 1984, 23 (01) :1-28
[10]   THE YANG-MILLS EQUATIONS OVER RIEMANN SURFACES [J].
ATIYAH, MF ;
BOTT, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 308 (1505) :523-615