Tumor suppressor P53: Regulation and function

被引:120
作者
Somasundaram, K
El-Deiry, WS
机构
[1] Univ Penn, Sch Med, Lab Mol Oncol & Cell Cycle Regulat, Philadelphia, PA 19104 USA
[2] Univ Penn, Sch Med, Howard Hughes Med Inst, Dept Med, Philadelphia, PA 19104 USA
[3] Univ Penn, Sch Med, Howard Hughes Med Inst, Dept Genet, Philadelphia, PA 19104 USA
[4] Univ Penn, Sch Med, Ctr Canc, Philadelphia, PA 19104 USA
关键词
p53; apoptosis; cell cycle; cancer; tumor suppressor; p73; review;
D O I
10.2741/Somasund
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The p53 protein is a transcription factor involved in maintaining genomic integrity by controlling cell cycle progression and cell survival. Mutations in p53 are the most frequently seen genetic alterations in human cancer. The function of p53 is critical to the way many cancer treatments kill cells because radiotherapy and chemotherapy act in part by triggering programmed cell death in response to DNA damage. Consequently, tumors which bear p53 mutations, are often difficult to treat and their prognosis is poor. Since the underlying feature of tumors with p53 mutations is the absence of functional p53, gene replacement therapy with wild-type p53 gene is being considered as an approach for treating a variety of cancers. In recent years, more information has been obtained regarding various pathways leading to the activation of p53, particularly those involving post-translational modifications of p53. Several new target genes of p53 have been identified. This review will summarize current knowledge on the structure, mechanism of activation and effectors of p53 function.
引用
收藏
页码:D424 / D437
页数:14
相关论文
共 155 条
[1]   P53 CONTROLS BOTH THE G(2)/M AND THE G(1) CELL-CYCLE CHECKPOINTS AND MEDIATES REVERSIBLE GROWTH ARREST IN HUMAN FIBROBLASTS [J].
AGARWAL, ML ;
AGARWAL, A ;
TAYLOR, WR ;
STARK, GR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (18) :8493-8497
[2]   ACCUMULATION OF WILD-TYPE P53 PROTEIN UPON GAMMA-IRRADIATION INDUCES A G(2) ARREST-DEPENDENT IMMUNOGLOBULIN-KAPPA LIGHT-CHAIN GENE-EXPRESSION [J].
ALONIGRINSTEIN, R ;
SCHWARTZ, D ;
ROTTER, V .
EMBO JOURNAL, 1995, 14 (07) :1392-1401
[3]  
Ashcroft M, 1999, MOL CELL BIOL, V19, P1751
[4]   Death receptors: Signaling and modulation [J].
Ashkenazi, A ;
Dixit, VM .
SCIENCE, 1998, 281 (5381) :1305-1308
[5]   INCREASED ACTIVITY OF P53 IN SENESCING FIBROBLASTS [J].
ATADJA, P ;
WONG, H ;
GARKAVTSEV, I ;
VEILLETTE, C ;
RIABOWOL, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (18) :8348-8352
[6]   Recruitment of p300/CBP in p53-dependent signal pathways [J].
Avantaggiati, ML ;
Ogryzko, V ;
Gardner, K ;
Giordano, A ;
Levine, AS ;
Kelly, K .
CELL, 1997, 89 (07) :1175-1184
[7]   4 P53 DNA-BINDING DOMAIN PEPTIDES BIND NATURAL P53-RESPONSE ELEMENTS AND BEND THE DNA [J].
BALAGURUMOORTHY, P ;
SAKAMOTO, H ;
LEWIS, MS ;
ZAMBRANO, N ;
CLORE, GM ;
GRONENBORN, AM ;
APPELLA, E ;
HARRINGTON, RE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (19) :8591-8595
[8]   The CBP co-activator is a histone acetyltransferase [J].
Bannister, AJ ;
Kouzarides, T .
NATURE, 1996, 384 (6610) :641-643
[9]   SITE-SPECIFIC BINDING OF WILD-TYPE-P53 TO CELLULAR DNA IS INHIBITED BY SV40-T ANTIGEN AND MUTANT P53 [J].
BARGONETTI, J ;
REYNISDOTTIR, I ;
FRIEDMAN, PN ;
PRIVES, C .
GENES & DEVELOPMENT, 1992, 6 (10) :1886-1898
[10]   A PROTEOLYTIC FRAGMENT FROM THE CENTRAL REGION OF P53 HAS MARKED SEQUENCE-SPECIFIC DNA-BINDING ACTIVITY WHEN GENERATED FROM WILD-TYPE BUT NOT FROM ONCOGENIC MUTANT P53-PROTEIN [J].
BARGONETTI, J ;
MANFREDI, JJ ;
CHEN, XB ;
MARSHAK, DR ;
PRIVES, C .
GENES & DEVELOPMENT, 1993, 7 (12B) :2565-2574