The catalytic effect of dihydrofolate reductase and its mutants is determined by reorganization energies

被引:84
作者
Liu, Hanbin [1 ]
Warshel, Arieh [1 ]
机构
[1] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA
关键词
D O I
10.1021/bi700201w
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The effect of distant mutations on the catalytic reaction of dihydrofolate reductase (DHFR) is reexamined by empirical valence bond simulations. The simulations reproduce for the first time the changes in the observed rate constants (without the use of adjustable parameters for this purpose) and show that the changes in activation barriers are strongly correlated with the corresponding changes in the reorganization energy. The preorganization of the polar groups of enzymes is the key catalytic factor, and anticatalytic mutations destroy this preorganization. Some anticatalytic mutations in DHFR also increase the distance between the donor and acceptor, but this effect is not directly related to catalysis since the native enzyme and the uncatalyzed reaction in water have similar average donor-acceptor distances. Insight into the effect of a mutation is provided by constructing the relevant free energy surfaces in terms of the generalized solute-solvent coordinates. It is shown how the mutations change the reaction coordinate and the activation barrier, and it is clarified that the corresponding changes do not reflect dynamical effects. It is also pointed out that all reactions in a condensed phase involve correlated motions (both in enzymes and in solution) and that the change of such motions upon mutations is a result of the change in the shape of the multidimensional reaction path on the solute-solvent surface, rather than the reason for the change in rate constant. Thus, as far as catalysis is concerned, the change in the activation barrier is due to the change in the electrostatic preorganization energy.
引用
收藏
页码:6011 / 6025
页数:15
相关论文
共 92 条
[1]   CALCULATIONS OF ELECTROSTATIC ENERGIES IN PHOTOSYNTHETIC REACTION CENTERS [J].
ALDEN, RG ;
PARSON, WW ;
CHU, ZT ;
WARSHEL, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (49) :12284-12298
[2]   A NEW MIXING OF HARTREE-FOCK AND LOCAL DENSITY-FUNCTIONAL THEORIES [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (02) :1372-1377
[3]   Catalysis and linear free energy relationships in aspartic proteases [J].
Bjelic, Sinisa ;
Aqvist, Johan .
BIOCHEMISTRY, 2006, 45 (25) :7709-7723
[4]   The dynamic energy landscape of dihydrofolate reductase catalysis [J].
Boehr, David D. ;
McElheny, Dan ;
Dyson, H. Jane ;
Wright, Peter E. .
SCIENCE, 2006, 313 (5793) :1638-1642
[5]   Evidence for a functional role of the dynamics of glycine-121 of Escherichia coli dihydrofolate reductase obtained from kinetic analysis of a site-directed mutant [J].
Cameron, CE ;
Benkovic, SJ .
BIOCHEMISTRY, 1997, 36 (50) :15792-15800
[6]   A perspective on biological catalysis [J].
Cannon, WR ;
Singleton, SF ;
Benkovic, SJ .
NATURE STRUCTURAL BIOLOGY, 1996, 3 (10) :821-833
[7]   ENZYME DYNAMICS - STATISTICAL PHYSICS APPROACH [J].
CARERI, G ;
FASELLA, P ;
GRATTON, E .
ANNUAL REVIEW OF BIOPHYSICS AND BIOENGINEERING, 1979, 8 :69-97
[8]   DISSECTING THE CATALYTIC TRIAD OF A SERINE PROTEASE [J].
CARTER, P ;
WELLS, JA .
NATURE, 1988, 332 (6164) :564-568
[9]   Catalytic mechanism of dihydrofolate reductase enzyme.: A combined quantum-mechanical/molecular-mechanical characterization of transition state structure for the hydride transfer step [J].
Castillo, R ;
Andrés, J ;
Moliner, V .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (51) :12140-12147
[10]   1α,25-dihydroxyvitamin D3 and bryostatin-1 synergize to induce monocytic differentiation of NB4 acute promyelocytic leukemia cells by modulating cell cycle progression [J].
Clark, CS ;
Konyer, JE ;
Meckling, KA .
EXPERIMENTAL CELL RESEARCH, 2004, 294 (01) :301-311