Chimera states for coupled oscillators

被引:1184
作者
Abrams, DM [1 ]
Strogatz, SH [1 ]
机构
[1] Cornell Univ, Dept Theoret & Appl Mech, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.93.174102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Arrays of identical oscillators can display a remarkable spatiotemporal pattern in which phase-locked oscillators coexist with drifting ones. Discovered two years ago, such "chimera states" are believed to be impossible for locally or globally coupled systems; they are peculiar to the intermediate case of nonlocal coupling. Here we present an exact solution for this state, for a ring of phase oscillators coupled by a cosine kernel. We show that the stable chimera state bifurcates from a spatially modulated drift state, and dies in a saddle-node bifurcation with an unstable chimera state.
引用
收藏
页码:174102 / 1
页数:4
相关论文
共 17 条
[1]   Synchronization in small-world systems [J].
Barahona, M ;
Pecora, LM .
PHYSICAL REVIEW LETTERS, 2002, 89 (05) :054101/1-054101/4
[2]   Exactly solvable phase oscillator models with synchronization dynamics [J].
Bonilla, LL ;
Vicente, CJP ;
Ritort, F ;
Soler, J .
PHYSICAL REVIEW LETTERS, 1998, 81 (17) :3643-3646
[3]   Dynamics of a ring of pulse-coupled oscillators: Group theoretic approach [J].
Bressloff, PC ;
Coombes, S ;
deSouza, B .
PHYSICAL REVIEW LETTERS, 1997, 79 (15) :2791-2794
[4]   Multibranch entrainment and scaling in large populations of coupled oscillators [J].
Daido, H .
PHYSICAL REVIEW LETTERS, 1996, 77 (07) :1406-1409
[5]  
ERMENTROUT B, 1986, VELIGER, V28, P369
[6]   THE BEHAVIOR OF RINGS OF COUPLED OSCILLATORS [J].
ERMENTROUT, GB .
JOURNAL OF MATHEMATICAL BIOLOGY, 1985, 23 (01) :55-74
[7]  
Kuramoto Y., 2002, Nonlinear Phenomena in Complex Systems, V5, P380
[8]  
Kuramoto Y, 2003, NONLINEAR DYNAMICS AND CHAOS: WHERE DO WE GO FROM HERE?, P209
[9]  
Kuramoto Y, 2003, CHEM OSCILLATIONS WA
[10]  
Murray J.D, 1989, Mathematical Biology, V19