XGef is a CPEB-interacting protein involved in Xenopus oocyte maturation

被引:16
作者
Reverte, CG
Yuan, L
Keady, BT
Lacza, C
Attfield, KR
Mahon, GM
Freeman, B
Whitehead, IP
Hake, LE
机构
[1] Boston Coll, Dept Biol, Chestnut Hill, MA 02467 USA
[2] Univ Med & Dent New Jersey, New Jersey Med Sch, Dept Microbiol & Mol Genet, Newark, NJ 07103 USA
关键词
polyadenylation; translation; guanine-nucleotide exchange factor; GEF; G-protein;
D O I
10.1016/S0012-1606(02)00089-1
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
XGef was isolated in a screen for proteins interacting with CPEB, a regulator of mRNA translation in early Xenopus development. XGef is a Rho-family guanine nucleotide exchange factor and activates Cdc42 in mammalian cells. Endogenous XGef (58 kDa) interacts with recombinant CPEB, and recombinant XGef interacts with endogenous CPEB in Xenopus oocytes. Injection of XGef antibodies into stage VI Xenopus oocytes blocks progesterone-induced oocyte maturation and prevents the polyadenylation and translation of c-mos mRNA; injection of XGef rescues these events. Overexpression of XGef in oocytes accelerates progesterone-induced oocyte maturation and the polyadenylation and translation of c-mos mRNA. Overexpression of a nucleotide exchange deficient version of XGef, which retains the ability to interact with CPEB, no longer accelerates oocyte maturation or Mos synthesis, suggesting that XGef exchange factor activity is required for the influence of overexpressed XGef on oocyte maturation. XGef overexpression continues to accelerate c-mos polyadenylation in the absence of Mos protein, but does not stimulate MAPK phosphorylation, MPF activation, or oocyte maturation, indicating that XGef may function through the Mos pathway to influence oocyte maturation. These results suggest that XGef may be an early acting component of the progesterone-induced oocyte maturation pathway. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:383 / 398
页数:16
相关论文
共 56 条
[1]   Structure and mutagenesis of the Dbl homology domain [J].
Aghazadeh, B ;
Zhu, K ;
Kubiseski, TJ ;
Liu, GA ;
Pawson, T ;
Zheng, Y ;
Rosen, MK .
NATURE STRUCTURAL BIOLOGY, 1998, 5 (12) :1098-1107
[2]  
Andreu V, 1998, COMPUTAT STUDIES, V2, P17
[3]  
[Anonymous], 1988, Antibodies: A Laboratory Manual
[4]   A dependent pathway of cytoplasmic polyadenylation reactions linked to cell cycle control by c-mos and CDK1 activation [J].
Ballantyne, S ;
Daniel, DL ;
Wickens, M .
MOLECULAR BIOLOGY OF THE CELL, 1997, 8 (08) :1633-1648
[5]   Meiotic maturation in Xenopus requires polyadenylation of multiple mRNAs [J].
Barkoff, A ;
Ballantyne, S ;
Wickens, M .
EMBO JOURNAL, 1998, 17 (11) :3168-3175
[6]   The classical progesterone receptor mediates Xenopus oocyte maturation through a nongenomic mechanism [J].
Bayaa, M ;
Booth, RA ;
Sheng, YL ;
Liu, XJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (23) :12607-12612
[7]   Rho GTPases and their effector proteins [J].
Bishop, AL ;
Hall, A .
BIOCHEMICAL JOURNAL, 2000, 348 (02) :241-255
[8]   Dissolution of the maskin-eIF4E complex by cytoplasmic polyadenylation and poly(A)-binding protein controls cyclin B1 mRNA translation and oocyte maturation [J].
Cao, QP ;
Richter, JD .
EMBO JOURNAL, 2002, 21 (14) :3852-3862
[9]   Regulation of xenopus p21-activated kinase (X-PAK2) by Cdc42 and maturation-promoting factor controls Xenopus oocyte maturation [J].
Cau, J ;
Faure, S ;
Vigneron, S ;
Labbé, JC ;
Delsert, C ;
Morin, N .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (04) :2367-2375
[10]   The temporal control of Wee1 mRNA translation during Xenopus oocyte maturation is regulated by cytoplasmic polyadenylation elements within the 3′-untranslated region [J].
Charlesworth, A ;
Welk, J ;
MacNicol, AM .
DEVELOPMENTAL BIOLOGY, 2000, 227 (02) :706-719