Mechanism-based partial inactivation of glutathione S-transferases by nitroglycerin:: tyrosine nitration vs sulfhydryl oxidation

被引:27
作者
Lee, WI [1 ]
Fung, HL [1 ]
机构
[1] SUNY Buffalo, Sch Pharm & Pharmaceut Sci, Dept Pharmaceut Sci, Buffalo, NY 14260 USA
来源
NITRIC OXIDE-BIOLOGY AND CHEMISTRY | 2003年 / 8卷 / 02期
关键词
glutathione S-transferase; nitroglycerin; inactivation; oxidation; nitration;
D O I
10.1016/S1089-8603(02)00183-0
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Liver glutathione-S-transferases (GSTs) are responsible for the detoxification of electrophiles, and specifically for the metabolism of orally administered organic nitrates such as nitroglycerin (NTG). Recent studies showed that reactive nitrogen species produced by tetranitromethane (TNM), peroxynitrite, or the myeloperoxidase/H2O2/nitrite system can inactivate GST. It is not known whether NTG can similarly inactivate liver GSTs, and if shown, by what mechanism(s). We incubated purified GSTs with NTG, S-nitroso-N-acetylpenicillamine (SNAP), TNM, or vehicle (5% dextrose, D5W), followed by determination of GST activity. Incubation of GST with NTG and TNM caused significant decreases in GST activity whereas no changes were observed with SNAP or D5W. The relative GST activity (vs preincubation) was 73 +/- 14% for NTG, 37 +/- 8% for TNM, 98 +/- 13% for SNAP, and 98 +/- 19% for D5W, respectively. Exogenous glutathione (GSH) prevented both NTG- and TNM-induced changes in GST activity, consistent with the observed oxidative modification of GST, such as -SH oxidation and dimerization of oxidized GST. In contrast, NTG and TNM exhibited substantial differences in their ability to nitrate tyrosine (TYR) sites in GST. These results demonstrated that NTG can reduce the activity of its own metabolizing enzyme such as GST and this inhibitory effect of NTG was unlikely to be mediated through NO, as such, since SNAP had no effect on GST activity. The partial inactivation of GST by NTG appeared to involve -SH oxidation, but not TYR nitration. These findings provided the first evidence of mechanism-based protein inactivation by NTG, and may lend insight into the hepatic metabolism of NTG and other organic nitrates after repeated oral exposure. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:103 / 110
页数:8
相关论文
共 52 条
[1]   Kinetics of peroxynitrite reaction with amino acids and human serum albumin [J].
Alvarez, B ;
Ferrer-Sueta, G ;
Freeman, BA ;
Radi, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (02) :842-848
[2]   Structure, catalytic mechanism, and evolution of the glutathione transferases [J].
Armstrong, RN .
CHEMICAL RESEARCH IN TOXICOLOGY, 1997, 10 (01) :2-18
[3]   Effects of nitroglycerin on soluble guanylate cyclase - Implications for nitrate tolerance [J].
Artz, JD ;
Schmidt, B ;
McCracken, JL ;
Marletta, MA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (21) :18253-18256
[4]   CHEMICAL MECHANISMS UNDERLYING THE VASODILATOR AND PLATELET ANTI-AGGREGATING PROPERTIES OF S-NITROSO-N-ACETYL-DL-PENICILLAMINE AND S-NITROSOGLUTATHIONE [J].
ASKEW, SC ;
BUTLER, AR ;
FLITNEY, FW ;
KEMP, GD ;
MEGSON, IL .
BIOORGANIC & MEDICINAL CHEMISTRY, 1995, 3 (01) :1-9
[5]  
ATKINS WM, 1993, J BIOL CHEM, V268, P19188
[6]   S-nitroglutathione, a product of the reaction between peroxynitrite and glutathione that generates nitric oxide [J].
Balazy, M ;
Kaminski, PM ;
Mao, KY ;
Tan, JZ ;
Wolin, MS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (48) :32009-32015
[7]   Carbon dioxide stimulates the production of thiyl, sulfinyl, and disulfide radical anion from thiol oxidation by peroxynitrite [J].
Bonini, MG ;
Augusto, O .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (13) :9749-9754
[8]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[9]   THE PECKING ORDER OF FREE-RADICALS AND ANTIOXIDANTS - LIPID-PEROXIDATION, ALPHA-TOCOPHEROL, AND ASCORBATE [J].
BUETTNER, GR .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1993, 300 (02) :535-543
[10]  
Butler AR, 1997, ANAL BIOCHEM, V249, P1