Connective tissue growth factor and its correlation to other growth factors in experimental granulation tissue

被引:17
作者
Inkinen, K
Wolff, H
Lindroos, P
Ahonen, J
机构
[1] Univ Helsinki, Haartman Inst, Dept Surg 4, Helsinki, Finland
[2] Univ Helsinki, Dept Pathol, Helsinki, Finland
基金
芬兰科学院;
关键词
CTGF; granulation tissue; growth factors; wound healing;
D O I
10.1080/03008200390151918
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Connective tissue growth factor (CTGF) is upregulated in a variety of fibrotic disorders, probably secondary to the activation and production of transforming growth factor-beta (TGF-beta). We have studied the expression of CTGF in a rat wound-healing model using Northern blot, in situ hybridization, and immunohistochemistry. The expression of CTGF mRNA in Northern blot and immunohistochemistry were correlated to the expression of TGF-beta1 and platelet-derived growth factor (PDGF). Northern hybridization showed the maximum expression of CTGF mRNA on day 14, whereas TGF-beta1 expression was maximal on days 7 and 14 and the time-related changes were smaller than for CTGF. PDGF A and PDGF B mRNA expressions were at maximum on day 14 and on day 21, respectively. In situ hybridization showed that fibroblast-like cells expressed CTGF most intensively, expression declining rapidly after day 14. CTGF mRNA and protein were found in blood vessel cells during the first week. In immunohistochemistry, all growth factors were expressed by fibroblast-like cells, macrophage-like cells, and blood vessels but CTGF-positive cells were fewer and were more restricted on days 5 and 7. These results demonstrate that CTGF expression together with TGF-beta and PDGF are upregulated in wound healing, and CTGF expression in blood vessels suggests that CTGF is involved in angiogenesis.
引用
收藏
页码:19 / 29
页数:11
相关论文
共 50 条
[1]   Tumor necrosis factor α suppresses the induction of connective tissue growth factor by transforming growth factor-β in normal and scleroderma fibroblasts [J].
Abraham, DJ ;
Xu, SW ;
Black, CM ;
Sa, S ;
Xu, YL ;
Leask, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (20) :15220-15225
[2]   HUMAN KERATINOCYTES ARE A MAJOR SOURCE OF CUTANEOUS PLATELET-DERIVED GROWTH-FACTOR [J].
ANSEL, JC ;
TIESMAN, JP ;
OLERUD, JE ;
KRUEGER, JG ;
KRANE, JF ;
TARA, DC ;
SHIPLEY, GD ;
GILBERTSON, D ;
USUI, ML ;
HART, CE .
JOURNAL OF CLINICAL INVESTIGATION, 1993, 92 (02) :671-678
[3]  
APPLETON I, 1993, LAB INVEST, V69, P405
[4]  
ASSOIAN RK, 1983, J BIOL CHEM, V258, P7155
[5]   EXPRESSION AND SECRETION OF TYPE-BETA TRANSFORMING GROWTH-FACTOR BY ACTIVATED HUMAN MACROPHAGES [J].
ASSOIAN, RK ;
FLEURDELYS, BE ;
STEVENSON, HC ;
MILLER, PJ ;
MADTES, DK ;
RAINES, EW ;
ROSS, R ;
SPORN, MB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (17) :6020-6024
[6]  
Babic AM, 1999, MOL CELL BIOL, V19, P2958
[7]   Reduced expression of PDGF and PDGF receptors during impaired wound healing [J].
Beer, HD ;
Longaker, MT ;
Werner, S .
JOURNAL OF INVESTIGATIVE DERMATOLOGY, 1997, 109 (02) :132-138
[8]   CONNECTIVE-TISSUE GROWTH-FACTOR - A CYSTEINE-RICH MITOGEN SECRETED BY HUMAN VASCULAR ENDOTHELIAL-CELLS IS RELATED TO THE SRC-INDUCED IMMEDIATE EARLY GENE-PRODUCT CEF-10 [J].
BRADHAM, DM ;
IGARASHI, A ;
POTTER, RL ;
GROTENDORST, GR .
JOURNAL OF CELL BIOLOGY, 1991, 114 (06) :1285-1294
[9]   The connective tissue growth factor cysteine-rich 61 nephroblastoma overexpressed (CCN) family [J].
Brigstock, DR .
ENDOCRINE REVIEWS, 1999, 20 (02) :189-206
[10]   REQUIREMENT OF VASCULAR INTEGRIN ALPHA(V)BETA(3) FOR ANGIOGENESIS [J].
BROOKS, PC ;
CLARK, RAF ;
CHERESH, DA .
SCIENCE, 1994, 264 (5158) :569-571