Renormalization-group improvement of effective actions beyond summation of leading logarithms

被引:22
作者
Ahmady, MR
Elias, V
McKeon, DGC
Squires, A
Steele, TG [1 ]
机构
[1] Mt Allison Univ, Dept Phys, Sackville, NB E4L 1E6, Canada
[2] Perimeter Inst Theoret Phys, Waterloo, ON N2J 2W9, Canada
[3] Univ Western Ontario, Dept Math Appl, London, ON N6A 5B7, Canada
[4] Univ Saskatchewan, Dept Phys & Engn Phys, Saskatoon, SK S7N 5E2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/S0550-3213(03)00008-7
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Invariance of the effective action under changes of the renormalization scale mu leads to relations between those (presumably calculated) terms independent of mu at a given order of perturbation theory and those higher-order terms dependent on logarithms of mu. This relationship leads to differential equations for a sequence of functions, the solutions of which give closed form expressions for the sum of all leading logs, next to leading logs, and subsequent subleading logarithmic contributions to the effective action. The renormalization group is thus shown to provide information about a model beyond the scale dependence of the model's couplings and masses. This procedure is illustrated using the phi(6)(3) model and Yang-Mills theory. In the latter instance, it is also shown by using a modified summation procedure that the mu dependence of the effective action resides solely in a multiplicative factor of g(2)(mu) (the running coupling). This approach is also shown to lead to a novel expansion for the running coupling in terms of the one-loop coupling that does not require an order-by-order redefinition of the scale factor Lambda(QCD). Finally, logarithmic contributions of the instanton size to the effective action of an SU(2) gauge theory are summed, allowing a determination of the asymptotic dependence on the instanton size rho as chi goes to infinity to all orders in the SU(2) coupling constant. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:221 / 249
页数:29
相关论文
共 47 条
[1]   THE BACKGROUND FIELD METHOD BEYOND ONE LOOP [J].
ABBOTT, LF .
NUCLEAR PHYSICS B, 1981, 185 (01) :189-203
[2]   Closed-form summation of renormalization-group-accessible logarithmic contributions to semileptonic B decays and other perturbative processes -: art. no. 014010 [J].
Ahmady, MR ;
Chishtie, FA ;
Elias, V ;
Fariborz, AH ;
Fattahi, N ;
McKeon, DGC ;
Sherry, TN ;
Steele, TG .
PHYSICAL REVIEW D, 2002, 66 (01) :140101-1401025
[3]   METHOD OF GAUGE-INVARIANT REGULARIZATION [J].
ASHMORE, JF .
LETTERE AL NUOVO CIMENTO, 1972, 4 (08) :289-+
[4]   Measurement of the axial-vector τ spectral functions and determination of αs(Mτ2) from hadronic τ decays [J].
Barate, R ;
Buskulic, D ;
Decamp, D ;
Ghez, P ;
Goy, C ;
Lees, JP ;
Lucotte, A ;
Merle, E ;
Minard, MN ;
Nief, JY ;
Pietrzyk, B ;
Alemany, R ;
Boix, G ;
Casado, MP ;
Chmeissani, M ;
Crespo, JM ;
Delfino, M ;
Fernandez, E ;
Fernandez-Bosman, M ;
Garrido, L ;
Grauges, E ;
Juste, A ;
Martinez, M ;
Merino, G ;
Miquel, R ;
Mir, LM ;
Park, IC ;
Pascual, A ;
Perlas, JA ;
Riu, I ;
Sanchez, F ;
Colaleo, A ;
Creanza, D ;
de Palma, M ;
Gelao, G ;
Iaselli, G ;
Maggi, G ;
Maggi, M ;
Nuzzo, S ;
Ranieri, A ;
Raso, G ;
Ruggieri, F ;
Selvaggi, G ;
Silvestris, L ;
Tempesta, P ;
Tricomi, A ;
Zito, G ;
Huang, X ;
Lin, J ;
Ouyang, Q .
EUROPEAN PHYSICAL JOURNAL C, 1998, 4 (03) :409-431
[5]  
BOLLINI CG, 1972, NUOV CIMEN S I FIS B, VB 12, P20
[7]   BROKEN SCALE INVARIANCE IN SCALAR FIELD THEORY [J].
CALLAN, CG .
PHYSICAL REVIEW D, 1970, 2 (08) :1541-&
[8]   ASYMPTOTIC-BEHAVIOR OF NON-ABELIAN GAUGE THEORIES TO 2-LOOP ORDER [J].
CASWELL, WE .
PHYSICAL REVIEW LETTERS, 1974, 33 (04) :244-246
[9]  
Chung JM, 1999, PHYS REV D, V60, DOI 10.1103/PhysRevD.60.105001
[10]   NEW METHODS FOR RENORMALIZATION GROUP [J].
COLLINS, JC ;
MACFARLANE, AJ .
PHYSICAL REVIEW D, 1974, 10 (04) :1201-1212