Fluorescence Detection of Heavy Atom Labeling (FD-HAL): A rapid method for identifying covalently modified cysteine residues by phasing atoms

被引:8
作者
Chaptal, Vincent [1 ]
Ujwal, Rachna [1 ]
Nie, Yiling [1 ]
Watanabe, Akira [1 ]
Kwon, Seunghyug [1 ]
Abramson, Jeff [1 ]
机构
[1] Univ Calif Los Angeles, David Geffen Sch Med, Dept Physiol, Los Angeles, CA 90095 USA
关键词
FD-HAL; Cysteine accessibility; TMRM; Heavy atom labeling; Membrane protein crystallography; Phasing atom detection; REVEALS MECHANISTIC INSIGHTS; MEMBRANE-PROTEINS; CRYSTAL-STRUCTURE; CRYSTALLIZATION; OVEREXPRESSION; OPTIMIZATION; PURIFICATION;
D O I
10.1016/j.jsb.2010.02.005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Membrane protein crystallography frequently stalls at the phase determination stage due to poor crystal diffraction and the inability to identify heavy atom derivatization prior to data collection. Thus, a majority of time, effort and resources are invested preparing potential derivatized crystals for synchrotron data collection and analysis without knowledge of heavy atom labeling. To remove this uncertainty, we introduce Fluorescence Detection of Heavy Atom Labeling (FD-HAL) using tetramethylrhodamine-5-maleimide (a fluorescent maleimide compound) to monitor in-gel cysteine residue accessibility and ascertain covalent modification by mercury, platinum and gold compounds. We have tested this technique on three integral membrane proteins (LacY, vSGLT and mVDAC1) and can quickly assess the optimal concentrations, time and heavy atom compound to derivatize free cysteine residues in order to facilitate crystal phasing. This, in conjunction with cysteine scanning for incorporating heavy atoms at strategic positions, is a useful tool that will considerably assist in phasing membrane protein structures. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:82 / 87
页数:6
相关论文
共 28 条
[1]  
Abramoff M.D., 2004, Biophotonics International, V11, P36
[2]   Structure and mechanism of the lactose permease of Escherichia coli [J].
Abramson, J ;
Smirnova, I ;
Kasho, V ;
Verner, G ;
Kaback, HR ;
Iwata, S .
SCIENCE, 2003, 301 (5633) :610-615
[3]   PORIN FROM BACTERIAL AND MITOCHONDRIAL OUTER MEMBRANES [J].
BENZ, R .
CRC CRITICAL REVIEWS IN BIOCHEMISTRY, 1985, 19 (02) :145-190
[4]  
Blake C C, 1968, Adv Protein Chem, V23, P59, DOI 10.1016/S0065-3233(08)60400-3
[5]   Screening for phasing atoms in protein crystallography [J].
Boggon, TJ ;
Shapiro, L .
STRUCTURE, 2000, 8 (07) :R143-R149
[6]   Overcoming the challenges of membrane protein crystallography [J].
Carpenter, Elisabeth P. ;
Beis, Konstantinos ;
Cameron, Alexander D. ;
Iwata, So .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2008, 18 (05) :581-586
[7]  
CARVIN D, 2006, INT TABLES CRYSTAL F, P247
[8]   Protein crystallization: from purified protein to diffraction-quality crystal [J].
Chayen, Naomi E. ;
Saridakis, Emmanuel .
NATURE METHODS, 2008, 5 (02) :147-153
[9]   Mass spectrometric analysis of mercury incorporation into proteins for X-ray diffraction phase determination [J].
Cohen, SL ;
Padovan, JC ;
Chait, BT .
ANALYTICAL CHEMISTRY, 2000, 72 (03) :574-579
[10]   Optimization of membrane protein overexpression and purification using GFP fusions [J].
Drew D. ;
Lerch M. ;
Kunji E. ;
Slotboom D.-J. ;
de Gier J.-W. .
Nature Methods, 2006, 3 (4) :303-313