Structural determinants of the enantioselectivity of the hydroxynitrile lyase from Hevea brasiliensis

被引:25
作者
Gartler, Guenter
Kratky, Christoph
Gruber, Karl
机构
[1] Graz Univ, Inst Chem, A-8010 Graz, Austria
[2] Res Ctr Appl Biocatalysis, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
cyanogenesis; C-C bond formation; crystal structure analysis; complexes with chiral substrates; stercospecificity;
D O I
10.1016/j.jbiotec.2006.12.009
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The hydroxynitrile lyase from the tropical rubber tree Hevea brasiliensis (HbHNL) is utilized as a biocatalyst in stereospecific syntheses of alpha-hydroxynitriles from aldehydes and methyl-ketones. The catalyzed reaction represents one of the few industrially relevant examples of enzyme mediated C-C coupling reactions. In this work, we determined the X-ray crystal structures (at 1.54 and 1.76 angstrom resolution) of HbHNL complexes with two chiral substrates - mandelonitrile and 2,3-dimethyl-2-hydroxybutyronitrile - by soaking and rapid freeze quenching techniques. This is the first structural observation of the complex between a HNL and chiral substrates. Consistent with the known selectivity of the enzyme, only the S-enantiomers of the two substrates were observed in the active site. The binding modes of the chiral substrates were identical to that observed for the biological substrate acetone cyanohydrin. This indicates that the transformation of these non-natural substrates follows the same mechanism. A large hydrophobic pocket was identified in the active site of HbHNL which accommodates the more voluminous substituents of the two substrates. A three-point binding mode of the substrates - hydrophobic pocket, hydrogen bonds between the hydroxyl group and Ser80 and Thr11, electrostatic interaction of the cyano group with Lys236 - offers a likely structural explanation for the enantioselectivity of the enzyme. The structural data rationalize the observed (S)-enantioselectivity and form the basis for modifying the stereospecificity through rational design. The structures also revealed the necessity of considerable flexibility of the sidechain of Trp128 in order to bind and transform larger substrates. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:87 / 97
页数:11
相关论文
共 47 条
[1]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[2]  
Bauer M, 1999, BIOTECHNOL BIOENG, V62, P20, DOI 10.1002/(SICI)1097-0290(19990105)62:1&lt
[3]  
20::AID-BIT3&gt
[4]  
3.0.CO
[5]  
2-I
[6]  
Bauer M, 2002, FOOD TECHNOL BIOTECH, V40, P9
[7]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[8]   Substrate specificity of mutants of the hydroxynitrile lyase from Manihot esculenta [J].
Bühler, H ;
Effenberger, F ;
Förster, S ;
Roos, J ;
Wajant, H .
CHEMBIOCHEM, 2003, 4 (2-3) :211-216
[9]  
CHENG IP, 1993, PLANT CELL PHYSIOL, V34, P1139
[10]  
Conn E., 1981, Secondary Plant Products, V7, P479, DOI DOI 10.1016/B978-0-12-675407-0.50022-1