The role of mesenchymal stem cells in maintenance and repair of bone

被引:177
作者
Bielby, Robert
Jones, Elena
McGonagle, Dennis [1 ]
机构
[1] Chapel Allerton Hosp, Acad Unit Musculoskeletal Dis, Leeds LS7 4SA, W Yorkshire, England
[2] St James Univ Hosp, Leeds Inst Mol Med, Leeds, W Yorkshire, England
来源
INJURY-INTERNATIONAL JOURNAL OF THE CARE OF THE INJURED | 2007年 / 38卷
关键词
mesenchymal stem cell; bone; fracture; coupling;
D O I
10.1016/j.injury.2007.02.007
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
The maintenance of stable bone mass during adult life, following rapid skeletal growth during childhood, is the result of a carefully controlled balance between the activities of bone forming (osteoblast) and bone resorbing (osteoclast) cells. Although skeletal turnover continues throughout adult life, the net effect of formation and resorption on bone mass is zero in healthy individuals. Later in life, bone mass begins to fall as resorption outpaces formation, particularly in postmenopausal women, which leads to increased fracture risk. The opposing actions of these two cell types are coupled by molecular interactions between them that are thought to be influenced by the actions of the precursor cells of the osteoblast lineage, mesenchymal stem cells (MSCs). In addition to regulating normal skeletal homeostasis, MSCs also play an important rote in fracture repair. Bone fracture or injury initiates a series of cellular and molecular pathways that commence with hematoma formation and an inflammatory cascade that regulates MSCs activity leading to fracture heating and the reestablishment of skeletal integrity. Although tremendous strides have been made in increasing our understanding of bone biology, there is surprisingly little data about the role of MSCs in vivo in the maintenance of skeletal integrity or fracture repair. In recent years, the pivotal importance of anabolic therapies in the setting of osteoporosis in which bone mass is substantially increased above and beyond what is attainable with the bisphosphonate class of drugs has put MSC biology firmly on the scientific agenda. Although the biology of cultured MSCs is reasonably well understood, the biology of MSCs in vivo in both bone turnover and fracture repair remains poorly understood. The recent phenotypic characterization of in vivo MSCs and the ability to prospectively purify such cells will open up new avenues of research into a better understanding of the role of MSCs in bone turnover. The purpose of this article is to review bone and fracture biology from the perspective of recent advances in our understanding of MSCs and to highlight the major deficiencies in our current knowledge.
引用
收藏
页码:S26 / S32
页数:7
相关论文
共 79 条
[1]   The surface adhesion molecule CXCR4 stimulates mesenchymal stem cell migration to stromal cell-derived factor-1 in vitro but does not decrease apoptosis under serum deprivation [J].
Bhakta, Shyam ;
Hong, Ping ;
Koc, Omer .
CARDIOVASCULAR REVASCULARIZATION MEDICINE, 2006, 7 (01) :19-24
[2]   Marrow stromal stem cells [J].
Bianco, P ;
Robey, PG .
JOURNAL OF CLINICAL INVESTIGATION, 2000, 105 (12) :1663-1668
[3]   Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood [J].
Bieback, K ;
Kern, S ;
Klüter, H ;
Eichler, H .
STEM CELLS, 2004, 22 (04) :625-634
[4]   Characterization of nonexpanded mesenchymal progenitor cells from normal adult human bone marrow [J].
Boiret, N ;
Rapatel, C ;
Veyrat-Masson, R ;
Guillouard, L ;
Guérin, JJ ;
Pigeon, P ;
Descamps, S ;
Boisgard, S ;
Berger, MG .
EXPERIMENTAL HEMATOLOGY, 2005, 33 (02) :219-225
[5]   Regulation of osteoprotegerin mRNA levels by prostaglandin E2 in human bone marrow stroma cells [J].
Brändström, H ;
Jonsson, KB ;
Ohlsson, C ;
Vidal, O ;
Ljunghall, S ;
Ljunggren, Ö .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1998, 247 (02) :338-341
[6]   Regulation of osteoprotegerin secretion from primary cultures of human bone marrow stromal cells [J].
Brändström, H ;
Björkman, T ;
Ljunggren, Ö .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2001, 280 (03) :831-835
[7]   Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells [J].
Bruder, SP ;
Kurth, AA ;
Shea, M ;
Hayes, WC ;
Jaiswal, N ;
Kadiyala, S .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1998, 16 (02) :155-162
[8]   The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects [J].
Bruder, SP ;
Kraus, KH ;
Goldberg, VM ;
Kadiyala, S .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 1998, 80A (07) :985-996
[9]   Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow [J].
Campagnoli, C ;
Roberts, IAG ;
Kumar, S ;
Bennett, PR ;
Bellantuono, I ;
Fisk, NM .
BLOOD, 2001, 98 (08) :2396-2402
[10]   In search of a real "Third way" in process and outcome [J].
Campbell, AT .
AMERICAN JOURNAL OF BIOETHICS, 2005, 5 (06) :66-68