Discrete mollification and automatic numerical differentiation

被引:60
作者
Murio, DA [1 ]
Mejia, CE
Zhan, S
机构
[1] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
[2] Univ Nacl Colombia, Dept Matemat, Medellin, Colombia
关键词
ill-posed problems; numerical differentiation; automatic filtering;
D O I
10.1016/S0898-1221(98)00001-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An automatic method for numerical differentiation, based on discrete mollification and the principle of generalized cross validation is presented. With data measured at a discrete set of points of a given interval, the method allows for the approximate recovery of the derivative function an the entire domain. No information about the noise is assumed. Error estimates are included together with several numerical examples of interest.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 9 条
[1]   SMOOTHING NOISY DATA WITH SPLINE FUNCTIONS [J].
WAHBA, G .
NUMERISCHE MATHEMATIK, 1975, 24 (05) :383-393
[2]  
de Hoog FR, 1987, NUMER MATH, V50, P311, DOI 10.1007/BF01390708
[3]   STABLE NUMERICAL FRACTIONAL DIFFERENTIATION BY MOLLIFICATION [J].
HAO, DN ;
REINHARDT, HJ ;
SEIFFARTH, F .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1994, 15 (5-6) :635-659
[4]   MOLLIFIED HYPERBOLIC METHOD FOR COEFFICIENT IDENTIFICATION PROBLEMS [J].
MEJIA, CE ;
MURIO, DA .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1993, 26 (05) :1-12
[5]   Numerical solution of generalized IHCP by discrete mollification [J].
Mejia, CE ;
Murio, DA .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 32 (02) :33-50
[6]  
MURIO D. A., 1993, MOLLIFICATION METHOD
[7]   DISCRETE STABILITY ANALYSIS OF THE MOLLIFICATION METHOD FOR NUMERICAL DIFFERENTIATION [J].
MURIO, DA ;
GUO, L .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1990, 19 (06) :15-26
[9]  
Wahba G., 1990, CBMS NSF REGIONAL C, DOI DOI 10.1137/1.9781611970128