On complexity of unconstrained hyperbolic 0-1 programming problems

被引:30
作者
Prokopyev, OA
Huang, HX
Pardalos, PA [1 ]
机构
[1] Univ Florida, Ctr Appl Optimizat, Dept Ind & Syst Engn, Gainesville, FL 32611 USA
[2] Tsing Hua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会; 美国国家卫生研究院;
关键词
hyperbolic; 0-1; programming; complexity; uniqueness; local search; approximability;
D O I
10.1016/j.orl.2004.05.011
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Single- and multiple-ratio unconstrained hyperbolic 0-1 programming problems are considered. We prove that checking whether these problems have a unique solution is NP-hard. Furthermore, we show that finding the global maximizer of problems with unique solution remains NP-hard. We also discuss complexity of local search and approximability for multiple-ratio problems. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:312 / 318
页数:7
相关论文
共 18 条
[1]  
[Anonymous], P 23 ANN S FDN COMP
[2]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theoryof NP-Completeness
[3]  
Arora S., 1996, Approximation Algorithms for NP-Hard Problems, P399
[4]  
Arora S.R., 1977, INDIAN J PURE APPL M, V8, P578
[5]  
Bellare M., 1993, COMPLEXITY NUMERICAL, P16
[6]   Pseudo-Boolean optimization [J].
Boros, E ;
Hammer, PL .
DISCRETE APPLIED MATHEMATICS, 2002, 123 (1-3) :155-225
[7]  
Charnes A., 1962, Naval Res Logist Quart, V9, P181, DOI [DOI 10.1002/NAV.3800090303, 10.1002/nav.3800090303]
[8]  
Hansen P., 1990, ANN MATH ARTIF INTEL, V1, P97, DOI [10.1007/BF01531072, DOI 10.1007/BF01531072]
[9]  
HANSEN P, 1991, MATH PROGRAM, V52, P256
[10]   HOW EASY IS LOCAL SEARCH [J].
JOHNSON, DS ;
PAPADIMITRIOU, CH ;
YANNAKAKIS, M .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1988, 37 (01) :79-100