Enhancing the robustness of a speciation-based PSO

被引:20
作者
Bird, Stefan [1 ]
Li, Xiaodong [1 ]
机构
[1] RMIT Univ, Sch Comp Sci & Informat Technol, Melbourne, Vic, Australia
来源
2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6 | 2006年
关键词
D O I
10.1109/CEC.2006.1688399
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
3Speciation encourages an evolutionary algorithm to locate multiple solutions in multimodal environments. Speciation algorithms often require a user to specify a parameter to define the species radius, which can be a major drawback since this knowledge may not be available a priori. This paper proposes a technique using a time-based convergence measure to overcome this problem. The proposed method is used to enhance the performance of a speciation-based PSO (SPSO) and has been shown to be robust over a wide range of values for this user-specified parameter.
引用
收藏
页码:843 / +
页数:2
相关论文
共 15 条
[1]   A Sequential Niche Technique for Multimodal Function Optimization [J].
Beasley, David ;
Bull, David R. ;
Martin, Ralph R. .
EVOLUTIONARY COMPUTATION, 1993, 1 (02) :101-125
[2]  
BRITS R, 2002, P 4 AS PAC C SIM EV, V2, P692
[3]   The particle swarm - Explosion, stability, and convergence in a multidimensional complex space [J].
Clerc, M ;
Kennedy, J .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (01) :58-73
[4]  
DEB K, 1989, PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON GENETIC ALGORITHMS, P42
[5]  
Goldberg D. E., 1987, Genetic Algorithms and their Applications: Proceedings of the Second International Conference on Genetic Algorithms, P41
[6]  
Harik G, 1995, P 6 INT C GEN ALG
[7]  
Jong KAD, 1975, THESIS U MICHIGAN
[8]  
Kennedy J, 2000, IEEE C EVOL COMPUTAT, P1507, DOI 10.1109/CEC.2000.870832
[9]  
Kennedy J., 2001, SWARM INTELLIGENCE
[10]   A species conserving genetic algorithm for multimodal function optimization [J].
Li, JP ;
Balazs, ME ;
Parks, GT ;
Clarkson, PJ .
EVOLUTIONARY COMPUTATION, 2002, 10 (03) :207-234