Solving problems with semidefinite and related constraints using interior-point methods for nonlinear programming

被引:43
作者
Benson, HY [1 ]
Vanderbei, RJ [1 ]
机构
[1] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08544 USA
关键词
semidefinite programming; second-order cone programming; interior-point methods; nonlinear programming;
D O I
10.1007/s10107-002-0350-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we describe how to reformulate a problem that has second-order cone and/or semi-definiteness constraints in order to solve it using a general-purpose interior-point algorithm for nonlinear programming. The resulting problems are smooth and convex, and numerical results from the DIMACS Implementation Challenge problems and SDPLib are provided.
引用
收藏
页码:279 / 302
页数:24
相关论文
共 28 条
[1]  
ANDERSEN E, MOSEK OPTIMIZATION S
[2]  
[Anonymous], 1979, NONNEGATIVE MATRICES
[3]  
Avriel M., 1988, GEN CONCAVITY
[4]  
BENSON HY, AMPL MODELS SDP SOCP
[5]  
BENSON HY, 2001, THESIS PRINCETON U
[6]  
BENSON HY, 2000, 0006 ORFE DEP OP RES
[7]  
BORCHERS B, SDPLIB 1 1 LIBR SEMI
[8]   Solving a class of semidefinite programs via nonlinear programming [J].
Burer, S ;
Monteiro, RDC ;
Zhang, Y .
MATHEMATICAL PROGRAMMING, 2002, 93 (01) :97-122
[9]  
BYRD RH, 2000, FEASIBLE INTERIOR ME
[10]  
Fiacco A.V., 1990, Nonlinear Programming Sequential Unconstrained Minimization Techniques