On smoothing methods for the P0 matrix linear complementarity problem

被引:32
作者
Chen, XJ [1 ]
Ye, YY
机构
[1] Shimane Univ, Dept Math & Comp Sci, Matsue, Shimane 6908504, Japan
[2] Univ Iowa, Dept Management Sci, Iowa City, IA 52242 USA
关键词
linear complementarity problem; P-0; matrix; smoothing algorithm;
D O I
10.1137/S1052623498335080
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a Big-Gamma smoothing method for solving the P-0 matrix linear complementarity problem. We study the trajectory defined by the augmented smoothing equations and global convergence of the method under an assumption that the original P-0 matrix linear complementarity problem has a solution. The method has been tested on the P-0 matrix linear complementarity problem with unbounded solution set. Preliminary numerical results indicate the robustness of the method.
引用
收藏
页码:341 / 363
页数:23
相关论文
共 20 条
[1]   The global linear convergence of a noninterior path-following algorithm for linear complementarity problems [J].
Burke, JV ;
Xu, S .
MATHEMATICS OF OPERATIONS RESEARCH, 1998, 23 (03) :719-734
[2]   A global and local superlinear continuation-smoothing method for P0 and R0 NCP or monotone NCP [J].
Chen, BT ;
Chen, XJ .
SIAM JOURNAL ON OPTIMIZATION, 1999, 9 (03) :624-645
[3]   Smoothing methods for convex inequalities and linear complementarity problems [J].
Chen, CH ;
Mangasarian, OL .
MATHEMATICAL PROGRAMMING, 1995, 71 (01) :51-69
[4]   On homotopy-smoothing methods for box-constrained variational inequalities [J].
Chen, XJ ;
Ye, YY .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (02) :589-616
[5]  
Cottle R, 1992, The Linear Complementarity Problem
[6]   Beyond monotonicity in regularization methods for nonlinear complementarity problems [J].
Facchinei, F ;
Kanzow, C .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (04) :1150-1161
[7]  
FACCHINEI F, 1998, TOTAL STABILITY VARI
[8]  
GABRIEL SA, 1996, COMPLEMENTARITY VARI, P105
[9]   Some noninterior continuation methods for linear complementarity problems [J].
Kanzow, C .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1996, 17 (04) :851-868
[10]   A LITTLE THEOREM OF THE BIG-MU IN INTERIOR-POINT ALGORITHMS [J].
KOJIMA, M ;
MIZUNO, S ;
YOSHISE, A .
MATHEMATICAL PROGRAMMING, 1993, 59 (03) :361-375