Rho GTPases and their regulators in neuronal functions and development

被引:75
作者
Koh, Cheng-Gee [1 ]
机构
[1] Nanyang Technol Univ, Sch Biol Sci, Singapore 637551, Singapore
关键词
Rho GTPases; actin cytoskeleton; guanine nucleotide exchange factor; GTPase-activating protein; guidance cue;
D O I
10.1159/000101527
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Neurons are specialized cell types which send out processes in order to communicate with other cells, which can be immediate neighbors or whose cell bodies are far distant. Neuronal morphology as in all cells is determined in large part through the regulation of the cytoskeleton. One of the key regulators of the actin cytoskeleton is the Rho family of GTPases. The Rho GTPases function as molecular switches to turn on or off downstream biochemical pathways depending on the stimuli. Their activities and their regulation are controlled by many other proteins such as the guanine nucleotide exchange factors and the GTPase-activating proteins. The activities of some of the Rho family members are reported to be antagonistic to one another. In general, Rac and Cdc42 promote neurite outgrowth while RhoA stimulates retraction. The balance of these opposing activities of the different Rho GTPases is crucial for the morphology and function of the neurons. Copyright (c) 2007 S. Karger AG, Basel.
引用
收藏
页码:228 / 237
页数:10
相关论文
共 83 条
[1]   PAK3 mutation in nonsyndromic X-linked mental retardation [J].
Allen, KM ;
Gleeson, JG ;
Bagrodia, S ;
Partington, MW ;
MacMillan, JC ;
Cerione, RA ;
Mulley, JC ;
Walsh, CA .
NATURE GENETICS, 1998, 20 (01) :25-30
[2]   Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase [J].
Amano, M ;
Chihara, K ;
Kimura, K ;
Fukata, Y ;
Nakamura, N ;
Matsuura, Y ;
Kaibuchi, K .
SCIENCE, 1997, 275 (5304) :1308-1311
[3]   Spatio-temporal regulation of Rac1 and Cdc42 activity during nerve growth factor-induced neurite outgrowth in PC12 cells [J].
Aoki, K ;
Nakamura, T ;
Matsuda, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (01) :713-719
[4]   Control of axon elongation via an SDF-1α/Rho/mDia pathway in cultured cerebellar granule neurons [J].
Arakawa, Y ;
Bito, H ;
Furuyashiki, T ;
Tsuji, T ;
Takemoto-Kimura, S ;
Kimura, K ;
Nozaki, K ;
Hashimoto, N ;
Narumiya, S .
JOURNAL OF CELL BIOLOGY, 2003, 161 (02) :381-391
[5]   The Drosophila trio plays an essential role in patterning of axons by regulating their directional extension [J].
Awasaki, T ;
Saito, M ;
Sone, M ;
Suzuki, E ;
Sakai, R ;
Ito, K ;
Hama, C .
NEURON, 2000, 26 (01) :119-131
[6]   The Netrin family of guidance factors:: emphasis on Netrin-1 signalling [J].
Barallobre, MJ ;
Pascual, M ;
Del Río, JA ;
Soriano, E .
BRAIN RESEARCH REVIEWS, 2005, 49 (01) :22-47
[7]   The guanine nucleotide exchange factor trio mediates axonal development in the Drosophila embryo [J].
Bateman, J ;
Shu, H ;
Van Vactor, D .
NEURON, 2000, 26 (01) :93-106
[8]   Biology of the p21-activated kinases [J].
Bokoch, GM .
ANNUAL REVIEW OF BIOCHEMISTRY, 2003, 72 :743-781
[9]   p190 RhoGAP is the principal Src substrate in brain and regulates axon outgrowth, guidance and fasciculation [J].
Brouns, MR ;
Matheson, SF ;
Settleman, J .
NATURE CELL BIOLOGY, 2001, 3 (04) :361-367
[10]   Critical role for kalirin in nerve growth factor signaling through TrkA [J].
Chakrabarti, K ;
Lin, R ;
Schiller, NI ;
Wang, YP ;
Koubi, D ;
Fan, YX ;
Rudkin, BB ;
Johnson, GR ;
Schiller, MR .
MOLECULAR AND CELLULAR BIOLOGY, 2005, 25 (12) :5106-5118