Synthesis and characterization of new polyaniline/nanotube composites

被引:102
作者
Maser, WK
Benito, AM
Callejas, MA
Seeger, T
Martínez, MT
Schreiber, J
Muszynski, J
Chauvet, O
Osváth, Z
Koós, AA
Biró, LP
机构
[1] CSIC, Inst Carboquim, E-50015 Zaragoza, Spain
[2] Inst Mat Jean Rouxel, LPC, F-44322 Nantes 3, France
[3] Res Inst Tech Phys & Mat Sci, H-1525 Budapest, Hungary
来源
MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS | 2003年 / 23卷 / 1-2期
关键词
carbon nanotubes; conducting polymers; composite materials;
D O I
10.1016/S0928-4931(02)00235-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
New polyaniline/nanotube (PANI/NT) composites have been synthesized by "in situ" polymerization processes using both multi-wall carbon nanotubes (MWNTs) and single-wall carbon nanotubes (SWNTs) in concentrations ranging from 2 to 50 wt.%. Although no structural changes are observed using MWNTs above a concentration of 20 wt.%, the in situ synthesis results in electronic interactions between nanotubes and the quinoid ring of PANI leading to enhanced electronic properties and thus to the formation of a genuine PANI/MWNT composite material. On the other hand, using SWNTs favors the formation of inhomogeneous mixtures rather than of a homogeneous composite materials, independent of the SWNT concentration. X-ray diffraction, Raman and transport measurements show the different behavior of both classes of nanotubes in PANI/NT materials. The difficulties in the formation of a true PANI/SWNT composite are related to the far more complex structure of the SWNT material itself, i.e. to the presence of entangled bundles of SWNTs, amorphous carbon and even catalytic metal particles. (C) 2002 Elsevier Science B.V All rights reserved.
引用
收藏
页码:87 / 91
页数:5
相关论文
共 12 条
[1]  
[Anonymous], SPRINGER SERIES SOLI
[2]  
Cochet M, 2000, J RAMAN SPECTROSC, V31, P1041, DOI 10.1002/1097-4555(200012)31:12<1041::AID-JRS641>3.0.CO
[3]  
2-R
[4]   Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite [J].
Coleman, JN ;
Curran, S ;
Dalton, AB ;
Davey, AP ;
McCarthy, B ;
Blau, W ;
Barklie, RC .
PHYSICAL REVIEW B, 1998, 58 (12) :R7492-R7495
[5]   Organic functionalization of carbon nanotubes [J].
Georgakilas, V ;
Kordatos, K ;
Prato, M ;
Guldi, DM ;
Holzinger, M ;
Hirsch, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (05) :760-761
[6]   HELICAL MICROTUBULES OF GRAPHITIC CARBON [J].
IIJIMA, S .
NATURE, 1991, 354 (6348) :56-58
[7]   Large-scale production of single-walled carbon nanotubes by the electric-arc technique [J].
Journet, C ;
Maser, WK ;
Bernier, P ;
Loiseau, A ;
delaChapelle, ML ;
Lefrant, S ;
Deniard, P ;
Lee, R ;
Fischer, JE .
NATURE, 1997, 388 (6644) :756-758
[8]   Microwave single walled carbon nanotubes purification [J].
Martínez, MT ;
Callejas, MA ;
Benito, AM ;
Maser, WK ;
Cochet, M ;
Andrés, JM ;
Schreiber, J ;
Chauvet, O ;
Fierro, JLG .
CHEMICAL COMMUNICATIONS, 2002, (09) :1000-1001
[9]  
MINTMIRE JW, 1992, PHYS REV LETT, V73, P2468
[10]   STRUCTURAL RIGIDITY AND LOW-FREQUENCY VIBRATIONAL-MODES OF LONG CARBON TUBULES [J].
OVERNEY, G ;
ZHONG, W ;
TOMANEK, D .
ZEITSCHRIFT FUR PHYSIK D-ATOMS MOLECULES AND CLUSTERS, 1993, 27 (01) :93-96