Comparison of genetic algorithm systems with neural network and statistical techniques for analysis of cloud structures in midlatitude storm systems

被引:9
作者
Parikh, JA [1 ]
DaPonte, JS
Vitale, JN
Tselioudis, G
机构
[1] So Connecticut State Univ, Dept Comp Sci, New Haven, CT 06515 USA
[2] Columbia Univ, New York, NY 10025 USA
[3] NASA, Goddard Inst Space Studies, New York, NY 10025 USA
关键词
cloud tracking; neural network; generic algorithm;
D O I
10.1016/S0167-8655(97)00115-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cloud analyses provide information which is vital to the detection, understanding and prediction of meteorological trends and environmental changes. This paper compares statistical, neural network and genetic algorithm methods for recognition and tracking of midlatitude storm clouds in sequences of low-resolution cloud-top pressure data sets. Regions of interest are identified and tracked from one image frame to the next consecutive frame in an eight-frame sequence. Classification techniques are used to determine the relationships between regions of interest in consecutive time frames. A genetic algorithm procedure is then used to revise classifier outputs to ensure that consistency constraints are not violated. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:1347 / 1351
页数:5
相关论文
共 17 条
[1]  
BANKERT RL, 1994, J APPL METEOROL, V33, P909, DOI 10.1175/1520-0450(1994)033<0909:CCOAII>2.0.CO
[2]  
2
[3]  
BOLLA R, 1995, P 8 INT C ICIAP 95, P677
[4]  
BROWN RA, 1994, APPL METEOR, V33
[5]  
COHEN I, 1996, P ECCV 96
[7]  
ENDLICH RM, 1981, J APPL METEOROL, V20, P309, DOI 10.1175/1520-0450(1981)020<0309:ACTATG>2.0.CO
[8]  
2
[9]  
KNIG W, 1992, J CLIMATE, V6, P2217
[10]  
Levine D, 1996, USERS GUIDE PGAPACK