BMP signaling in the control of skin development and hair follicle growth

被引:154
作者
Botchkarev, VA
Sharov, AA
机构
[1] Boston Univ, Sch Med, Dept Dermatol, Boston, MA 02118 USA
[2] Boston Univ, Sch Med, Dept Pathol, Boston, MA 02118 USA
[3] Boston Univ, Sch Med, Dept Lab Med, Boston, MA 02118 USA
关键词
bone morphogenetic proteins; noggin; skin; hair follicle; morphogenesis;
D O I
10.1111/j.1432-0436.2004.07209005.x
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Bone morphogenetic proteins (BMPs), their antagonists, and BMP receptors are involved in controlling a large number of biological functions including cell proliferation, differentiation, cell fate decision, and apoptosis in many different types of cells and tissues during embryonic development and postnatal life. BMPs exert their biological effects via using BMP-Smad and BMP-MAPK intracellular pathways. The magnitude and specificity of BMP signaling are regulated by a large number of modulators operating on several levels (extracellular, cytoplasmic, nuclear). In developing and postnatal skin, BMPs, their receptors, and BMP antagonists show stringent spatio-temporal expressions patterns to achieve proper regulation of cell proliferation and differentiation in the epidermis and in the hair follicle. Genetic studies assert an essential role for BMP signaling in the control of cell differentiation and apoptosis in developing epidermis, as well as in the regulation of key steps of hair follicle development (initiation, cell fate decision, cell lineage differentiation). In postnatal hair follicles, BMP signaling plays an important role in controlling the initiation of the growth phase and is also involved in the regulation of apoptosis-driven hair follicle involution. However, additional efforts are required to fully understand the mechanisms and targets involved in the realization of BMP effects on distinct cell population in the skin and hair follicle. Progress in this area of research will hopefully lead to the development of new therapeutic approaches for using BMPs and BMP antagonists in the treatment of skin and hair growth disorders.
引用
收藏
页码:512 / 526
页数:15
相关论文
共 169 条
[1]   Alopecia universalis associated with a mutation in the human hairless gene [J].
Ahmad, W ;
Haque, WFU ;
Brancolini, V ;
Tsou, HC ;
Haque, SU ;
Lam, H ;
Aita, VM ;
Owen, J ;
deBlaquiere, M ;
Frank, J ;
Cserhalmi-Friedman, PB ;
Leask, A ;
McGrath, JA ;
Peacocke, M ;
Ahmad, M ;
Ott, J ;
Christiano, AM .
SCIENCE, 1998, 279 (5351) :720-724
[2]   Hedgehog signaling regulates sebaceous gland development [J].
Allen, M ;
Grachtchouk, M ;
Sheng, H ;
Grachtchouk, V ;
Wang, A ;
Wei, LB ;
Liu, JH ;
Ramirez, A ;
Metzger, D ;
Chambon, P ;
Jorcano, J ;
Dlugosz, AA .
AMERICAN JOURNAL OF PATHOLOGY, 2003, 163 (06) :2173-2178
[3]   Epithelial Bmpr1a regulates differentiation and proliferation in postnatal hair follicles and is essential for tooth development [J].
Andl, T ;
Ahn, K ;
Kairo, A ;
Chu, EY ;
Wine-Lee, L ;
Reddy, ST ;
Croft, NJ ;
Cebra-Thomas, JA ;
Metzger, D ;
Chambon, P ;
Lyons, KM ;
Mishina, Y ;
Seykora, JT ;
Crenshaw, EB ;
Millar, SE .
DEVELOPMENT, 2004, 131 (10) :2257-2268
[4]   WNT signals are required for the initiation of hair follicle development [J].
Andl, T ;
Reddy, ST ;
Gaddapara, T ;
Millar, SE .
DEVELOPMENTAL CELL, 2002, 2 (05) :643-653
[5]  
[Anonymous], MOL BASIS EPITHELIAL
[6]   The organizer factors Chordin and Noggin are required for mouse forebrain development [J].
Bachiller, D ;
Klingensmith, J ;
Kemp, C ;
Belo, JA ;
Anderson, RM ;
May, SR ;
McMahon, JA ;
McMahon, AP ;
Harland, RM ;
Rossant, J ;
De Robertis, EM .
NATURE, 2000, 403 (6770) :658-661
[7]   SMIF, a Smad4-interacting protein that functions as a co-activator in TGFβ signalling [J].
Bai, RY ;
Koester, C ;
Ouyang, T ;
Hahn, SA ;
Hammerschmidt, M ;
Peschel, C ;
Duyster, J .
NATURE CELL BIOLOGY, 2002, 4 (03) :181-190
[8]   Extracellular regulation of BMP signaling in vertebrates: A cocktail of modulators [J].
Balemans, W ;
Van Hul, W .
DEVELOPMENTAL BIOLOGY, 2002, 250 (02) :231-250
[9]   HEDGEHOG AND BMP GENES ARE COEXPRESSED AT MANY DIVERSE SITES OF CELL-CELL INTERACTION IN THE MOUSE EMBRYO [J].
BITGOOD, MJ ;
MCMAHON, AP .
DEVELOPMENTAL BIOLOGY, 1995, 172 (01) :126-138
[10]   Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche [J].
Blanpain, C ;
Lowry, WE ;
Geoghegan, A ;
Polak, L ;
Fuchs, E .
CELL, 2004, 118 (05) :635-648