Gene copy number variation spanning 60 million years of human and primate evolution

被引:128
作者
Dumas, Laura
Kim, Young H.
Karimpour-Fard, Anis
Cox, Michael
Hopkins, Janet
Pollack, Jonathan R.
Sikela, James M. [1 ]
机构
[1] Univ Colorado Denver, Human Med Genet Program, Aurora, CO 80045 USA
[2] Hlth Sci Ctr, Aurora, CO 80045 USA
[3] Stanford Univ, Dept Pathol, Stanford, CA 94305 USA
[4] Univ Colorado Denver, Dept Prevent Med & Biometr, Aurora, CO 80045 USA
[5] Univ Colorado Denver, Neurosci Program, Aurora, CO 80045 USA
[6] Univ Colorado Denver, Dept Pharmacol, Aurora, CO 80045 USA
关键词
D O I
10.1101/gr.6557307
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Given the evolutionary importance of gene duplication to the emergence of species-specific traits, we have extended the application of cDNA array-based comparative genomic hybridization (aCGH) to survey gene duplications and losses genome-wide across 10 primate species, including human. Using human cDNA arrays that contained 41,126 cDNAs, corresponding to 24,473 unique human genes, we identified 4159 genes that likely represent most of the major lineage-specific gene copy number gains and losses that have occurred in these species over the past 60 million years. We analyzed 1,233,780 gene-to-gene data points and found that gene gains typically outnumbered losses (ratio of gains/losses = 2.34) and these frequently cluster in complex and dynamic genomic regions that are likely to serve as gene nurseries. Almost one-third of all human genes (6696) exhibit an aCGH-predicted change in copy number in one or more of these species, and within-species gene amplification is also evident. Many of the genes identified here are likely to be important to lineage-specific traits including, for example, human-specific duplications of the AQP7 gene, which represent intriguing candidates to underlie the key physiological adaptations in thermoregulation and energy utilization that permitted human endurance running.
引用
收藏
页码:1266 / 1277
页数:12
相关论文
共 55 条
[1]   Recent segmental duplications in the human genome [J].
Bailey, JA ;
Gu, ZP ;
Clark, RA ;
Reinert, K ;
Samonte, RV ;
Schwartz, S ;
Adams, MD ;
Myers, EW ;
Li, PW ;
Eichler, EE .
SCIENCE, 2002, 297 (5583) :1003-1007
[2]   Cytoskeletal genes regulating brain size [J].
Bond, J ;
Woods, CG .
CURRENT OPINION IN CELL BIOLOGY, 2006, 18 (01) :95-101
[3]   A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size [J].
Bond, J ;
Roberts, E ;
Springell, K ;
Lizarraga, S ;
Scott, S ;
Higgins, J ;
Hampshire, DJ ;
Morrison, EE ;
Leal, GF ;
Silva, EO ;
Costa, SMR ;
Baralle, D ;
Raponi, M ;
Karbani, G ;
Rashid, Y ;
Jafri, H ;
Bennett, C ;
Corry, P ;
Walsh, CA ;
Woods, CG .
NATURE GENETICS, 2005, 37 (04) :353-355
[4]   Endurance running and the evolution of Homo [J].
Bramble, DM ;
Lieberman, DE .
NATURE, 2004, 432 (7015) :345-352
[5]   THE ENERGETIC PARADOX OF HUMAN RUNNING AND HOMINID EVOLUTION [J].
CARRIER, DR .
CURRENT ANTHROPOLOGY, 1984, 25 (04) :483-495
[6]   A genome-wide comparison of recent chimpanzee and human segmental duplications [J].
Cheng, Z ;
Ventura, M ;
She, XW ;
Khaitovich, P ;
Graves, T ;
Osoegawa, K ;
Church, D ;
DeJong, P ;
Wilson, RK ;
Pääbo, S ;
Rocchi, M ;
Eichler, EE .
NATURE, 2005, 437 (7055) :88-93
[7]   Genome-wide detection of segmental duplications and potential assembly errors in the human genome sequence [J].
Cheung, J ;
Estivill, X ;
Khaja, R ;
MacDonald, JR ;
Lau, K ;
Tsui, LC ;
Scherer, SW .
GENOME BIOLOGY, 2003, 4 (04)
[8]  
*CHIMP SEQ AN CONS, 2005, NATURE, V0437
[9]   Complex genomic rearrangements lead to novel primate gene function [J].
Ciccarelli, FD ;
von Mering, C ;
Suyama, M ;
Harrington, ED ;
Izaurralde, E ;
Bork, P .
GENOME RESEARCH, 2005, 15 (03) :343-351
[10]   Finishing the euchromatic sequence of the human genome [J].
Collins, FS ;
Lander, ES ;
Rogers, J ;
Waterston, RH .
NATURE, 2004, 431 (7011) :931-945