Comparative analysis of complete genomes reveals gene loss, acquisition and acceleration of evolutionary rates in Metazoa, suggests a prevalence of evolution via gene acquisition and indicates that the evolutionary rates in animals tend to be conserved

被引:13
作者
Babenko, VN [1 ]
Krylov, DM [1 ]
机构
[1] NIH, Natl Ctr Biotechnol Informat, Natl Lib Med, Bethesda, MD 20894 USA
关键词
D O I
10.1093/nar/gkh833
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In this study we systematically examined the differences between the proteomes of Metazoa and other eukaryotes. Metazoans (Homo sapiens, Ceanorhabditis elegans and Drosophila melanogaster) were compared with a plant (Arabidopsis thaliana), fungi (Saccharomyces cerevisiae and Schizosaccaromyces pombe) and Encephalitozoan cuniculi. We identified 159 gene families that were probably lost in the Metazoan branch and 1263 orthologous families that were specific to Metazoa and were likely to have originated in their last common ancestor (LCA). We analyzed the evolutionary rates of pan-eukaryotic protein families and identified those with higher rates in animals. The acceleration was shown to occur in: (i) the LCA of Metazoa or (ii) independently in the Metazoan phyla. A high proportion of the accelerated Metazoan protein families was found to participate in translation and ribosome biogenesis, particularly mitochondrial. By functional analysis we show that no metabolic pathway in animals evolved faster than in other organisms. We conclude that evolution in the LCA of Metazoa was extensive and proceeded largely by gene duplication and/or invention rather than by modification of extant proteins. Finally, we show that the rate of evolution of a gene family in animals has a clear, but not absolute, tendency to be conserved.
引用
收藏
页码:5029 / 5035
页数:7
相关论文
共 31 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   Lineage-specific loss and divergence of functionally linked genes in eukaryotes [J].
Aravind, L ;
Watanabe, H ;
Lipman, DJ ;
Koonin, EV .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (21) :11319-11324
[3]   Bayesian models of episodic evolution support a late Precambrian explosive diversification of the Metazoa [J].
Aris-Brosou, S ;
Yang, ZH .
MOLECULAR BIOLOGY AND EVOLUTION, 2003, 20 (12) :1947-1954
[4]  
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkr1065, 10.1093/nar/gkh121]
[5]  
Felsenstein J, 1996, METHOD ENZYMOL, V266, P418
[6]   Determining divergence times with a protein clock: Update and reevaluation [J].
Feng, DF ;
Cho, G ;
Doolittle, RF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (24) :13028-13033
[7]   DISTINGUISHING HOMOLOGOUS FROM ANALOGOUS PROTEINS [J].
FITCH, WM .
SYSTEMATIC ZOOLOGY, 1970, 19 (02) :99-&
[8]  
FITCH WM, 1970, EVOL BIOL, V4, P67
[9]  
HENDY MD, 2000, P ROY SOC LOND B BIO, V267, P1041
[10]   Gene families: The taxonomy of protein paralogs and chimeras [J].
Henikoff, S ;
Greene, EA ;
Pietrokovski, S ;
Bork, P ;
Attwood, TK ;
Hood, L .
SCIENCE, 1997, 278 (5338) :609-614