Quantum fluctuations versus topology - a study in U(1)(2) lattice gauge theory

被引:18
作者
Gattringer, CR [1 ]
Hip, I [1 ]
Lang, CB [1 ]
机构
[1] GRAZ UNIV, INST THEORET PHYS, A-8010 GRAZ, AUSTRIA
关键词
D O I
10.1016/S0370-2693(97)00932-5
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Using the geometric definition of the topological charge we decompose the path integral of 2-dimensional U(1) lattice gauge theory into topological sectors, In a Monte Carlo simulation we compute the average value of the action as well as the distribution of its values for each sector separately. These numbers are compared with analytic lower bounds of the action which are relevant for classical configurations carrying topological charge. We find that quantum fluctuations entirely dominate the path integral. Our results for the probability distribution of the Monte Carlo generated configurations among the topological sectors can be understood by a semi-phenomenological argument. (C) 1997 Published by Elsevier Science B.V.
引用
收藏
页码:371 / 376
页数:6
相关论文
共 22 条
[1]  
BARDEEN W, HEPLAT9705002
[2]   PSEUDOPARTICLE SOLUTIONS OF YANG-MILLS EQUATIONS [J].
BELAVIN, AA ;
POLYAKOV, AM ;
SCHWARTZ, AS ;
TYUPKIN, YS .
PHYSICS LETTERS B, 1975, 59 (01) :85-87
[3]   DEFINITION AND STATISTICAL DISTRIBUTIONS OF A TOPOLOGICAL NUMBER IN THE LATTICE O(3) SIGMA-MODEL [J].
BERG, B ;
LUSCHER, M .
NUCLEAR PHYSICS B, 1981, 190 (02) :412-424
[4]  
COLELLA P, 1973, SPRINGER LECT NOTES
[5]  
DEFORCRAND P, HEPLAT9701012
[6]   Topological aspects of QCD. [J].
DiGiacomo, A .
NUCLEAR PHYSICS B, 1996, :136-143
[7]   HYBRID MONTE-CARLO [J].
DUANE, S ;
KENNEDY, AD ;
PENDLETON, BJ ;
ROWETH, D .
PHYSICS LETTERS B, 1987, 195 (02) :216-222
[8]   TOPOLOGICAL CHARGE IN THE LATTICE SCHWINGER MODEL [J].
FLUME, R ;
WYLER, D .
PHYSICS LETTERS B, 1982, 108 (4-5) :317-322
[9]  
GATTRINGER CR, UNPUB
[10]  
GAUSTERER H, HEPLAT9609032