Supporting dynamic interactions among Web-based information sources

被引:21
作者
Bouguettaya, A
Benatallah, B
Hendra, L
Ouzzani, M
Beard, J
机构
[1] Virginia Tech, Dept Comp Sci, Falls Church, VA 22043 USA
[2] Univ New S Wales, Sch Comp Sci & Engn, Sydney, NSW 2052, Australia
[3] Litton PRC, Mclean, VA 22101 USA
基金
美国国家科学基金会;
关键词
Web databases; semistructured data; web querying; CORBA; web agent;
D O I
10.1109/69.877508
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The ubiquity of the World Wide Web offers an ideal opportunity for the deployment of highly distributed applications. Now that connectivity is no longer an issue, the attention has turned to providing a middleware infrastructure that will sustain data sharing among Web-accessible databases. We present a dynamic architecture and system for describing, locating, and accessing data from Web-accessible databases. We propose the use of flexible organizational constructs service links and coalitions to facilitate data organization, discovery, and sharing among Internet-accessible databases. A language is also proposed to support the definition and manipulation of these constructs. The implementation combines Java, CORBA, database API (JDBC), agent, and database technologies to support a scalable and portable architecture interconnecting large networks of heterogeneous and autonomous: databases. We report on an experiment to provide uniform access to a Web of healthcare-related databases.
引用
收藏
页码:779 / 801
页数:23
相关论文
共 40 条
[1]  
AHMED R, 1991, IEEE COMPUT, V24, P12
[2]  
Arens Y., 1993, International Journal of Intelligent & Cooperative Information Systems, V2, P127, DOI 10.1142/S0218215793000071
[3]  
ARENS Y, 1996, ADV PLANNING TECHNOL
[4]  
ATZENI P, 1997, ACM SIGMOD RECORD, V26, P16
[5]  
Baker S., 1997, IEEE INTERNET COMPUT, V1, P43
[6]  
Bayardo R., 1997, P ACM SIGMOD INT C M
[7]  
BOUGUETTAYA A, 1998, INTERCONNECTING HETE
[8]  
BOUGUETTAYA A, 1994, P 5 AUSTR DAT C
[9]  
BOUGUETTAYA A, 1999, P 15 INT C DAT ENG M
[10]  
BOWMAN C, 1995, HARVEST SCALABLE CUS