ArcS, the Cognate Sensor Kinase in an Atypical Arc System of Shewanella oneidensis MR-1

被引:109
作者
Lassak, Juergen [1 ]
Henche, Anna-Lena [1 ]
Binnenkade, Lucas [1 ]
Thormann, Kai M. [1 ]
机构
[1] Max Planck Inst Terr Mikrobiol, Dept Ecophysiol, D-35043 Marburg, Germany
关键词
2-COMPONENT SIGNAL-TRANSDUCTION; CAMP RECEPTOR PROTEIN; ESCHERICHIA-COLI; GENE-EXPRESSION; RESPONSE REGULATOR; MYXOCOCCUS-XANTHUS; GLOBAL REGULATOR; HAEMOPHILUS-INFLUENZAE; ANAEROBIC RESPIRATION; OXYGEN AVAILABILITY;
D O I
10.1128/AEM.00512-10
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The availability of oxygen is a major environmental factor for many microbes, in particular for bacteria such as Shewanella species, which thrive in redox-stratified environments. One of the best-studied systems involved in mediating the response to changes in environmental oxygen levels is the Arc two-component system of Escherichia coli, consisting of the sensor kinase ArcB and the cognate response regulator ArcA. An ArcA ortholog was previously identified in Shewanella, and as in Escherichia coli, Shewanella ArcA is involved in regulating the response to shifts in oxygen levels. Here, we identified the hybrid sensor kinase SO_0577, now designated ArcS, as the previously elusive cognate sensor kinase of the Arc system in Shewanella oneidensis MR-1. Phenotypic mutant characterization, transcriptomic analysis, protein-protein interaction, and phosphotransfer studies revealed that the Shewanella Arc system consists of the sensor kinase ArcS, the single phosphotransfer domain protein HptA, and the response regulator ArcA. Phylogenetic analyses suggest that HptA might be a relict of ArcB. Conversely, ArcS is substantially different with respect to overall sequence homologies and domain organizations. Thus, we speculate that ArcS might have adopted the role of ArcB after a loss of the original sensor kinase, perhaps as a consequence of regulatory adaptation to a redox-stratified environment.
引用
收藏
页码:3263 / 3274
页数:12
相关论文
共 76 条
[1]  
AIBA H, 1981, J BIOL CHEM, V256, P1905
[2]  
Aiyar A, 1996, Methods Mol Biol, V57, P177
[3]   Quantitative assessment of oxygen availability:: Perceived aerobiosis and its effect on flux distribution in the respiratory chain of Escherichia coli [J].
Alexeeva, S ;
Hellingwerf, KJ ;
de Mattos, MJT .
JOURNAL OF BACTERIOLOGY, 2002, 184 (05) :1402-1406
[4]   Requirement of ArcA for redox regulation in Escherichia coli under microaerobic but not anaerobic or aerobic conditions [J].
Alexeeva, S ;
Hellingwerf, KJ ;
de Mattos, MJT .
JOURNAL OF BACTERIOLOGY, 2003, 185 (01) :204-209
[5]   Effects of limited aeration and of the ArcAB system on intermediary pyruvate catabolism in Escherichia coli [J].
Alexeeva, S ;
de Kort, B ;
Sawers, G ;
Hellingwerf, KJ ;
de Mattos, MJT .
JOURNAL OF BACTERIOLOGY, 2000, 182 (17) :4934-4940
[6]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[7]   NEW APPROACH TO CULTIVATION OF METHANOGENIC BACTERIA - 2-MERCAPTOETHANESULFONIC ACID (HS-COM)-DEPENDENT GROWTH OF METHANOBACTERIUM-RUMINANTIUM IN A PRESSURIZED ATMOSPHERE [J].
BALCH, WE ;
WOLFE, RS .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1976, 32 (06) :781-791
[8]   Unexpected chemoreceptors mediate energy taxis towards electron acceptors in Shewanella oneidensis [J].
Baraquet, Claudine ;
Theraulaz, Laurence ;
Iobbi-Nivol, Chantal ;
Mejean, Vincent ;
Jourlin-Castelli, Cecile .
MOLECULAR MICROBIOLOGY, 2009, 73 (02) :278-290
[9]   Validation of a novel, fully integrated and flexible microarray benchtop facility for gene expression profiling -: art. no. e151 [J].
Baum, M ;
Bielau, S ;
Rittner, N ;
Schmid, K ;
Eggelbusch, K ;
Dahms, M ;
Schlauersbach, A ;
Tahedl, H ;
Beier, M ;
Güimil, R ;
Scheffler, M ;
Hermann, C ;
Funk, JM ;
Wixmerten, A ;
Rebscher, H ;
Hönig, M ;
Andreae, C ;
Büchner, D ;
Moschel, E ;
Glathe, A ;
Jäger, E ;
Thom, M ;
Greil, A ;
Bestvater, F ;
Obermeier, F ;
Burgmaier, J ;
Thome, K ;
Weichert, S ;
Hein, S ;
Binnewies, T ;
Foitzik, V ;
Müller, M ;
Stähler, CF ;
Stähler, PF .
NUCLEIC ACIDS RESEARCH, 2003, 31 (23) :e151
[10]   The ArcBA Two-Component System of Escherichia coli Is Regulated by the Redox State of both the Ubiquinone and the Menaquinone Pool [J].
Bekker, Martijn ;
Alexeeva, Svetlana ;
Laan, Wouter ;
Sawers, Gary ;
de Mattos, Joost Teixeira ;
Hellingwerf, Klaas .
JOURNAL OF BACTERIOLOGY, 2010, 192 (03) :746-754